首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apomixis for crop improvement   总被引:2,自引:0,他引:2  
Summary Apomixis is a genetically controlled reproductive process by which embryos and seeds develop in the ovule without female meiosis and egg cell fertilization. Apomixis produces seed progeny that are exact replicas of the mother plant. The major advantage of apomixis over sexual reproduction is the possibility to select individuals with desirable gene combinations and to propagate them as clones. In contrast to clonal propagation through somatic embryogenesis or in vitro shoot multiplication, apomixis avoids the need for costly processes, such as the production of artificial seeds and tissue culture. It simplifies the processes of commercial hybrid and cultivar production and enables a large-scale seed production economically in both seed- and vegetatively propagated crops. In vegetatively reproduced plants (e.g., potato), the main applications of apomixis are the avoidance of phytosanitary threats and the spanning of unfavorable seasons. Because of its potential for crop improvement and global agricultural production, apomixis is now receiving increasing attention from both scientific and industrial sectors. Harnessing apomixis is a major goal in applied plant genetic engineering. In this regard, efforts are focused on genetic and breeding strategies in various plant species, combined with molecular methods to analyze apomictic and sexual modes of reproduction and to identify key regulatory genes and mechanisms underlying these processes. Also, investigations on the components of apomixis, i.e., apomeiosis, parthenogenesis, and endosperm development without fertilization, genetic screens for apomictic mutants and transgenic approaches to modify sexual reproduction by using various regulatory genes are receiving a major effort. These can open new avenues for the transfer of the apomixis trait to important crop species and will have far-reaching potentials in crop improvement regarding agricultural production and the quality of the products.  相似文献   

2.
Genomics-assisted breeding for crop improvement   总被引:14,自引:0,他引:14  
Genomics research is generating new tools, such as functional molecular markers and informatics, as well as new knowledge about statistics and inheritance phenomena that could increase the efficiency and precision of crop improvement. In particular, the elucidation of the fundamental mechanisms of heterosis and epigenetics, and their manipulation, has great potential. Eventually, knowledge of the relative values of alleles at all loci segregating in a population could allow the breeder to design a genotype in silico and to practice whole genome selection. High costs currently limit the implementation of genomics-assisted crop improvement, particularly for inbreeding and/or minor crops. Nevertheless, marker-assisted breeding and selection will gradually evolve into 'genomics-assisted breeding' for crop improvement.  相似文献   

3.
The typical crop improvement cycle takes 10–15 years to complete and includes germplasm manipulations, genotype selection and stabilization, variety testing, variety increase, proprietary protection and crop production stages. Plant tissue culture and genetic engineering procedures that form the basis of plant biotechnology can contribute to most of these crop improvement stages. This review provides an overview of the opportunities presented by the integration of plant biotechnology into plant improvement efforts and raises some of the societal issues that need to be considered in their application.  相似文献   

4.
A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as “foundation for twenty-first century crop improvement”, a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as “the holy grail” of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.  相似文献   

5.
Plant genetic engineering for crop improvement   总被引:1,自引:0,他引:1  
Plant genetic engineering has long since left its experimental stage: transgenic plants with resistance to viruses, bacteria, fungi, various pests and abiotic stresses have already been released in their hundreds. Transgenic plants can produce better fruits and food of higher quality than wild-types, and can be used as bioreactors for the synthesis of pharmaceutically important compounds. This review portrays some of the achievements in this field of plant molecular biology.The authors are with Plant Molecular Biology, Biozentrum, Frankfurt University, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany  相似文献   

6.
7.
Efforts have been directed to redesign crops with increased yield, stress adaptability, and nutritional value through synthetic biology—the application of engineering principles to biology. A recent expansion in our understanding of how epigenetic mechanisms regulate plant development and stress responses has unveiled a new set of resources that can be harnessed to develop improved crops, thus heralding the promise of “synthetic epigenetics.” In this review, we summarize the latest advances in e...  相似文献   

8.
? Bread wheat (Triticum aestivum; Poaceae) is a crop plant of great importance. It provides nearly 20% of the world's daily food supply measured by calorie intake, similar to that provided by rice. The yield of wheat has doubled over the last 40 years due to a combination of advanced agronomic practice and improved germplasm through selective breeding. More recently, yield growth has been less dramatic, and a significant improvement in wheat production will be required if demand from the growing human population is to be met. ? Next-generation sequencing (NGS) technologies are revolutionizing biology and can be applied to address critical issues in plant biology. Technologies can produce draft sequences of genomes with a significant reduction to the cost and timeframe of traditional technologies. In addition, NGS technologies can be used to assess gene structure and expression, and importantly, to identify heritable genome variation underlying important agronomic traits. ? This review provides an overview of the wheat genome and NGS technologies, details some of the problems in applying NGS technology to wheat, and describes how NGS technologies are starting to impact wheat crop improvement.  相似文献   

9.
The sequencing of large and complex genomes of crop species, facilitated by new sequencing technologies and bioinformatic approaches, has provided new opportunities for crop improvement. Current challenges include understanding how genetic variation translates into phenotypic performance in the field.  相似文献   

10.
11.
Array-based high-throughput DNA markers for crop improvement   总被引:8,自引:0,他引:8  
Gupta PK  Rustgi S  Mir RR 《Heredity》2008,101(1):5-18
The last two decades have witnessed a remarkable activity in the development and use of molecular markers both in animal and plant systems. This activity started with low-throughput restriction fragment length polymorphisms and culminated in recent years with single nucleotide polymorphisms (SNPs), which are abundant and uniformly distributed. Although the latter became the markers of choice for many, their discovery needed previous sequence information. However, with the availability of microarrays, SNP platforms have been developed, which allow genotyping of thousands of markers in parallel. Besides SNPs, some other novel marker systems, including single feature polymorphisms, diversity array technology and restriction site-associated DNA markers, have also been developed, where array-based assays have been utilized to provide for the desired ultra-high throughput and low cost. These microarray-based markers are the markers of choice for the future and are already being used for construction of high-density maps, quantitative trait loci (QTL) mapping (including expression QTLs) and genetic diversity analysis with a limited expense in terms of time and money. In this study, we briefly describe the characteristics of these array-based marker systems and review the work that has already been done involving development and use of these markers, not only in simple eukaryotes like yeast, but also in a variety of seed plants with simple or complex genomes.  相似文献   

12.
Prospects for the applications ofrol genes for crop improvement are discussed. As suggested in many reports, rol genes are suitable tools to modify plant developmental processes, such as formation of adventitious roots and release of axillary buds from apical dominance. Practical applications, however, might be hampered by the many pleiotropic side effects that are observed in plants transformed withrol genes. Alternative approaches need to be developed, therefore, to overcome these undesired effects. We offer a novel approach for application that is clearly different from earlier strategies, and that is based on the application ofrol genes incombination plants; i.e., plants consisting of an untransformed scion grafted on a rootstock transformed with arol gene. In rose it was demonstrated for the first time that expression ofrol genes in rootstocks led to an accelerated release of axillary buds of the untransformed scion, but without the transmission of many undesired pleiotropic effects. We expect that this stimulation will result in a changed plant architecture leading to a more efficient production of roses. Alternatively, the pleiotropic effects may be overcome by employingrol genes that are driven by organ- or tissue-specific promoters, leading to a more defined expression of these genes.  相似文献   

13.
Essential oils, synthesized and stored in leaf glandular trichomes, of the Mentha species are valuated commercially as additives for food products, cosmetics and pharmaceuticals. Mint production and oil yield is attenuated by both biotic and abiotic stresses. Consequently, there is need for development of cultivars with pest resistance and stable oil quality. Most mint cultivars are natural hybrids vegetatively propagated. Their sterility impairs the success of conventional breeding and to date, the application of irradiation mutation techniques have not resulted in the release of new commercially acceptable cultivars for widespread use. The paper summarizes the state of mint biotechnology by discussing advancements related to in vitro culture and genetic transformation, generation of herbicide resistant plants, and strategies for enhancing disease resistance and essential oil biosynthesis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Targeted integration of foreign genes into plant genomes is a much sought-after technology for engineering precise integration structures. Homologous recombination-mediated targeted integration into native genomic sites remained somewhat elusive until made possible by zinc finger nuclease-mediated double-stranded breaks. In the meantime, an alternative approach based on the use of site-specific recombination systems has been developed which enables integration into previously engineered genomic sites (site-specific integration). Follow-up studies have validated the efficacy of the site-specific integration technology in generating transgenic events with a predictable range and stability of expression through successive generations, which are critical features of reliable and practically useful transgenic lines. Any DNA delivery methods can be used for site-specific integration; however, best efficiency is mostly obtained with direct DNA delivery methods such as particle bombardment. Although site-specific integration approach provides unique advantages for producing transgenic plants, it is still not a commonly used method. The present article discusses barriers and solutions for making it readily available to both academic research and applicative use.  相似文献   

15.
16.
17.
18.
19.
Genome engineering for crop improvement and future agriculture   总被引:1,自引:0,他引:1  
Caixia Gao 《Cell》2021,184(6):1621-1635
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号