首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylxanthines (MX) inhibit cell division in sea urchin and clam eggs. This inhibitory effect is not mediated via cAMP. MX also inhibit respiration in marine eggs, at concentrations which inhibit cleavage. Studies showed that no changes occurred in ATP and ADP levels in the presence of inhibitory concentrations of MX, indicating an extra-mitochondrial site of action for the drug. Subsequent studies revealed decreased levels of NADP+ and NADPH, when eggs were incubated with inhibitory concentrations of MX, but no change in levels of NAD+ and NADH. MX did not affect the pentose phosphate shunt pathway and did not have any effect on the enzyme NAD+ -kinase. Further studies showed a marked inhibitory effect on the glutathione reductase activity of MX-treated eggs. Reduced glutathione (GSH) could reverse the cleavage inhibitory effect of MX. Moreover, diamide, a thiol-oxidizing agent specific for GSH in living cells, caused inhibition of cell division in sea urchin eggs. Diamide added to eggs containing mitotic apparatus (MA) could prevent cleavage by causing a dissolution of the formed MA. Both MX and diamide inhibit a Ca2+-activated ATPase in whole eggs. The enzyme can be reactivated by sulfhydryl reducing agents added in the assay mixture. In addition, diamide causes an inhibition of microtubule polymerization, reversible with dithioerythritol. All experimental evidence so far suggests that inhibition of mitosis in sea urchin eggs by MX is mediated by perturbations of the in vivo thiol-disulfide status of target systems, with a primary effect on glutathione levels.  相似文献   

2.
Microtubule assembly is required for the formation of the male and female pronuclei during mouse, but not sea urchin, fertilization. In mouse oocytes, 50 μM colcemid prevents the decondensation of the maternal meiotic chromosomes and of the incorporated sperm nucleus during in vitro fertilization. Nuclear lamins do not associate with either of the parental chromatin sets although peripherin, the PI nuclear peripheral antigen, appears on both. DN A synthesis docs not occur in these fertilized, colcemid-arrested oocytes. This effect is limited to the first hours after ovulation, since colcemid added 4–6 hours later no longer prevents pronuclear development, lamin acquisition, or DNA synthesis. Neither microtubule stabilization with 10 μM taxol nor microfilament inhibition with 10 μM cytochalasin D or 2.2 μg/ml lalrunculin A prevent these pronuclear events; these drugs will inhibit the apposition of the pronuclei at the egg center. In sea urchin eggs, colcemid or griseofulvin treatment doe? not result in the same effect and the male pronucleus forms with the attendant accumulation of the nuclear lamins. The differences in the requirement for microtubule assembly during pronucleus formation may be related to the cell cycle: In mice the sperm enters a meiotic cytoplasm, whereas in sea urchin eggs it enters an interphase cytoplasm. Refertilization of mitotic sea urchin eggs was performed to test the possibility that this phenomenon is related to whether the sperm enters a meiotic/mitotic cytoplasm or one at interphase; during refertilization at first mitosis, the incorporated sperm nucleus is unable to decondense and acquire lamins. These results indicate a requirement for microtubule assembly for the progression from meiosis to first interphase during mouse fertilization and suggest that the cytoskeleton is required for changes in nuclear architecture necessary during fertilization and the cell cycle.  相似文献   

3.
Using an antiserum produced against a purified calsequestrin-like (CSL) protein from a microsomal fraction of sea urchin eggs, we performed light and electron microscopic immunocytochemical localizations on sea urchin eggs and embryos in the first cell cycle. The sea urchin CSL protein has been found to bind Ca++ similarly to calsequestrin, the well-characterized Ca++ storage protein in the sarcoplasmic reticulum of muscle cells. In semi-thin frozen sections of unfertilized eggs, immunofluorescent staining revealed a tubuloreticular network throughout the cytoplasm. Staining of isolated egg cortices with the CSL protein antiserum showed the presence of a submembranous polygonal, tubular network similar to ER network patterns seen in other cells and in egg cortices treated with the membrane staining dye DiIC16[3]. In frozen sections of embryos during interphase of the first cell cycle, a cytoplasmic network similar to that of the unfertilized egg was present. During mitosis, we observed a dramatic concentration of the antibody staining within the asters of the mitotic apparatus where ER is known to aggregate. Electron microscopic localization on unfertilized eggs using peroxidase-labeled secondary antibody demonstrated the presence of the CSL protein within the luminal compartment of ER-like tubules. Finally, in frozen sections of centrifugally stratified eggs, the immunofluorescent staining concentrated in the clear zone: a layer highly enriched in ER and thought to be the site of calcium release upon fertilization. This localization of a CSL protein within the ER of the egg provides evidence for the ability of this organelle to serve a Ca++ storage role in the regulation of intracellular Ca++ in nonmuscle cells in general, and in the regulation of fertilization and cell division in sea urchin eggs in particular.  相似文献   

4.
Interphylum crossing was examined between sea urchin eggs (Temnopleurus hardwicki) and oyster sperm (Crassostrea gigas). The eggs could receive the spermatozoa with or without cortical change. The fertilized eggs that elevated the fertilization envelope began their embryogenesis. Electron microscopy revealed that oyster spermatozoa underwent acrosome reaction on the sea urchin vitelline coat, and their acrosomal membrane fused with the egg plasma membrane after the appearance of an intricate membranous structure in the boundary between the acrosomal process and the egg cytoplasm. Oyster spermatozoa penetrated sometimes into sea urchin eggs without stimulating cortical granule discharge and consequently without fertilization envelope formation. The organelles derived from oyster spermatozoa seemed to be functionally inactive in the eggs whose cortex remained unchanged.  相似文献   

5.
The pathway of sperm entry during sea urchin fertilization was analyzed by using sperm covalently labeled with fluorescent and radioactive tracers. Sperm that have been covalently labeled on their surfaces with fluorescein isothiocyanate (FITC) or a radioactive congener, diiodofluorescein isothiocyanate (125IFC), transfer labeled components to the egg that persist throughout early development. In order to study the transfer of sperm components and their fate after fertilization, cytochalasin B-dependent inhibition of fertilization, previously shown to permit the cortical reaction of sea urchin eggs but block sperm pronuclear incorporation, was investigated. Under certain conditions cytochalasin B or D (CB or CD) results in about half of the activated eggs having both the sperm nucleus and the fluorescently labeled sperm components arrested apparently at the level of the egg plasma membrane. This arrest of internalization was reversed by removal of CB or CD, and the sperm derivatives entered the egg. When sperm were labeled noncovalently with ethidium bromide or rhodamine 123, fluorescence was transferred to the egg in the cytochalasin-inhibited state in a fashion similar to that found in normal fertilization; in both cases the sperm fluorescence disappeared within a few minutes of fertilization, due to the repartitioning of the noncovalent dyes into the egg cytoplasm. It is concluded that cytochalasin arrests fertilization at an intermediate step in which the sperm has fused with the egg to achieve cytoplasmic continuity, but in which the subsequent internalization of sperm components is inhibited. After removal of cytochalasins the fluorescent sperm components move from the egg surface to an internal site, a process that can be monitored by time-lapse video microscopy with an image intensifier to permit extended observations of sperm fluorescence. The cytoplasmic location of labeled sperm components was substantiated by autoradiography of early embryos fertilized with 125IFC-labeled sperm; transfer of sperm components to an internal site was seen after fertilization of either sea urchin or mouse eggs. Taken together, the data suggest that the fate of the labeled sperm surface components, as well as that of the sperm nucleus, is to be transferred to the egg cytoplasm, and that this transfer is mediated by the actin-dependent cytoskeleton of the egg.  相似文献   

6.
We have previously described a novel actin-capping protein, a 20,000-molecular weight protein (20K protein)-actin complex (20K-A) isolated from sea urchin eggs. In the present study, the localization and possible function of this 20K protein were investigated. The 20K protein was localized in the sea urchin egg cortex. Its distribution in the cortex as revealed by immunofluorescence microscopy did not change during or after fertilization up to the first mitosis, but it was concentrated to some extent in the cleavage furrow region. Exogenously added actin polymerized on the cortex isolated from unfertilized egg; however, actin did not polymerize on the cortex extracted with 0.6 M KCl, that is, the cell membrane, which lost the 20K protein. The cell membrane preincubated with 20K-A restored the activity to grow actin filaments. When decorated with myosin subfragment 1, almost all the actin filaments showed the arrowhead configuration pointing away from the membrane, indicating that they were connected to the membrane at their barbed ends. These results strongly suggest that the 20K protein connects actin filaments to the plasma membrane of sea urchin eggs. Because of this property we call this protein "actolinkin".  相似文献   

7.
Sea urchin eggs were cut into halves. The nucleate and anucleate halves and whole eggs were irradiated with γ-rays and then fertilized with normal sperm. The first mitosis of the diploid half-egg was more delayed than the division of the whole egg. There was a small, but highly significant, delay of the mitosis of the haploid half-egg, thus demonstrating cytoplasmic sensitivity to ionizing radiation. Since the sensitivity of nucleate cells is influenced by cytoplasmic volume, the problem of the role of cytoplasm in repair is considered in relation to these data and other reports in the literature.  相似文献   

8.
The distribution of the refractive index (RI) of the protoplasm in sea urchin eggs was determined from the optical path differences at various regions of the cell measured by interference microscopy assuming that the cell structure is symmetrical about the line passing through the center of the cell and that of the nucleus in unfertilized eggs and about the spindle axis in fertilized eggs during mitosis and cleavage. The RI of the cytoplasm in the unfertilized egg was uniform except for the cortical region, which had the RI higher than that of the underlying endoplasm. The RI of the cortex was generally higher than that of the underlying endoplasm, which did not appreciably change during mitosis and cleavage. The RI of the nucleus was lower than that of the cytoplasm. The RI of the mitotic apparatus was lower than that of the surrounding cytoplasm. The fertilization membrane had a thickness of about 0.6 μm in hydrated state and about 25 nm in dried state (mean values). The RI of the perivitelline space was about 0.00015 higher than that of seawater, equivalent to 0.08 g/100 ml of contents.  相似文献   

9.
The sea urchin embryo hyaline layer is an extracellular investment which develops within 20 min postinsemination of Strongylocentrotus purpuratus eggs and contains a single calcium-precipitable subunit termed hyalin. Other ultrastructural and biochemical studies have suggested that hyalin is localized in the cortical granules. We have examined the hypothesis that hyalin is a cell surface protein of the unfertilized egg using vectorial lactoperoxidase-catalyzed radioiodination. Extracts of labeled unfertilized eggs contained several labeled proteins, one of which was electrophoretically indistinguishable from authentic hyalin isolated by each of three different procedures. Pronase digestion of labeled unfertilized eggs removed 75% of the label, but the labeled hyalin-like molecule was still present in whole cell extracts. Upon insemination, pronase-digested, labeled eggs formed an apparently normal hyaline layer and whole cell extracts contained the labeled hyalin-like molecule. Denuded, labeled eggs were inseminated and the hyaline layer was selectively solubilized in calcium- and magnesium-free artificial seawater. Labeled hyalin was purified from this crude hyalin preparation to constant specific radioactivity and apparent homogeneity as shown by gel electrophoresis. These data strongly suggest that hyalin or a precursor is a cell surface protein of the unfertilized sea urchin egg.  相似文献   

10.
We determined that the phosphatidylinositol (PI) cycles in both sea urchin sperm and eggs are necessary for normal fertilization, and that the PI cycle in sea urchin zygotes is involved in control of mitosis. The PI cycle is involved in Ca++ homeostasis so our data are direct evidence that Ca++ is involved with control of mitosis and fertilization. We implicated the PI cycle by adding Li+ to sea urchin eggs, sperm, or zygotes: those effects of Li+ due to effects on the PI cycle were overcome by myo-inositol but not by its optical isomer, scyllitol, and not by mannitol.  相似文献   

11.
It is well known that stimulation of egg metabolism after fertilization is due to a rise in intracellular free calcium concentration. In sea urchin eggs, this first calcium signal is followed by other calcium transients that allow progression through mitotic control points of the cell cycle of the early embryo. How sperm induces these calcium transients is still far from being understood. In sea urchin eggs, both InsP3 and ryanodine receptors contribute to generate the fertilization calcium transient, while the InsP3 receptor generates the subsequent mitotic calcium transients. The identity of the mechanisms that generate InsP3 after fertilization remains an enigma. In order to determine whether PLCgamma might be the origin of the peaks of InsP3 production that punctuate the first mitotic cell cycles of the fertilized sea urchin egg, we have amplified by RT-PCR several fragments of sea urchin PLCgamma containing the two SH2 domains. The sequence shares similarities with SH2 domains of PLCgamma from mammals. One fragment was subcloned into a bacterial expression plasmid and a GST-fusion protein was produced and purified. Antibodies raised to the GST fusion protein demonstrate the presence of PLCgamma protein in eggs. Microinjection of the fragment into embryos interferes with mitosis. A related construct made from bovine PLCgamma also delayed or prevented entry into mitosis and blocked or prolonged metaphase. The bovine construct also blocked the calcium transient at fertilization, in contrast to a tandem SH2 control construct which did not inhibit either fertilization or mitosis. Our data indicate that PLCgamma plays a key role during fertilization and early development.  相似文献   

12.
When sea urchin eggs are pretreated with fluorescent chelate probe chlorotetracycline (CTC) and then fertilized with unlabeled sperm, a small, brightly fluorescent particle resembling the mitochondrion of free-swimming sperm both in size and fluorescent staining characteristics appears in the egg cytoplasm. This particle first appears near the base of the insemination cone and, like the paternal mitochondrion identified in previous ultrastructural studies, remains closely associated with the male pronucleus during its microtubule-dependent migration toward the egg center. These similarities strongly suggest that the fluorescent particle observed in the cytoplasm of living, CTC-pretreated sea urchin eggs is, in fact, the mitochondrion of the fertilizing sperm.  相似文献   

13.
Experiments have been carried out to test the proposal that the pH increase at fertilization in sea urchin eggs promotes microvillar elongation. Results presented herein show that microvillar elongation and microfilament formation occurred when sea urchin eggs were incubated in sodium-free seawater containing the calcium ionophore A23187, a treatment which initiates activation, i.e., induces a transient increase in intracellular free calcium, but prevents subsequent cytoplasmic alkalinization. Within elongated microvilli and cortices of these eggs, microfilaments were arranged in a loose meshwork. However, if the pH of the egg cytoplasm was increased experimentally, microfilament bundles appeared within individual microvilli. These findings suggest that: (1) microvillar elongation and microfilament formation in the sea urchin egg at fertilization may occur when cytoplasmic alkalinization is inhibited, and (2) formation of the microvillus bundle of microfilaments at egg activation is pH sensitive. Additionally, if the cytoplasmic pH of unfertilized eggs was experimentally elevated by NH4Cl, microvilli failed to elongate. These data indicate that elevation of intracellular pH by this method is not sufficient to induce microvillar elongation.  相似文献   

14.
The 15 kDa protein is the most abundant low molecular weight Ca2+-binding protein, different from calmodulin, in eggs of sea urchin, Hemicentrotus pulcherrimus. The data from the amino acid sequence demonstrated that the 15 kDa protein belonged to the troponin C superfamily. Based on immunofluorescent and immunomicroscopic observations, we showed that the 15 kDa protein localized in the nuclei of fertilized eggs and mitotic apparatus of dividing eggs. Microinjection of the antibody against 15 kDa protein into sea urchin blastomeres resulted in the arresting of cell division. These results suggest that the 15 kDa protein plays an important role in mitosis of sea urchin egg.  相似文献   

15.
The intracellular levels of GSH, GSSG, and protein-glutathione disulfide (protein-SSG) have been measured in the eggs and developing embryos of the sea urchins Lytechinus pictus and Strongylocentrotus purpuratus. Total cellular glutathione is maintained in a very highly reduced state during these initial stages of development. Thus for unfertilized eggs of L. pictus the results (μmol/g dry weight) were 11 ± 1 for GSH, 0.02 ± 0.01 for GSSG, and 0.07 ± 0.02 for protein-SSG. No significant change in these values was observed upon fertilization of the eggs or during the first cell division cycle. The values obtained with S. purpuratus were somewhat greater, but were also found to exhibit no significant variations upon fertilization or cell division. These observations indicates that changes in the total cellular glutathione thiol-disulfide status are not involved in the control mechanisms which operate during fertilization or the first cell division cycle in the sea urchin egg.  相似文献   

16.
A dynein-like ATPase activity has been isolated previously from soluble extracts of unfertilized sea urchin eggs. However, the use of non-quantitative isolation techniques, in particular affinity for microtubules or Ca2+/calmodulin, has precluded accurate estimates of dynein pool size. We have taken the unique approach of using dynein-like ATPase activity to quantitate the egg dynein pool. This approach is based on the isolation by anion-exchange chromatography on DEAE-Sephacel of a peak of dynein-like ATPase activity comprising 65% of soluble ATPase activity in the cytosolic extract. Identification of cytoplasmic dynein was based on dose-dependent inhibition by erythro-9-[3-(2-hydroxynonyl)]adenine and orthovanadate, low GTPase activity and a sedimentation coefficient of 12 S. Two high molecular weight polypeptides corresponding to the A- and D-bands of axonemal dynein were shown to copurify with dynein-like ATPase activity and to undergo specific photocrosslinking with [alpha-32P]ATP, suggesting that they were egg dynein catalytic polypeptides. The specific ATPase activity of these putative catalytic polypeptides was determined to be 1.2 mumol.min-1.mg-1. The specific dynein-like ATPase activity of the crude soluble extract of unfertilized sea urchin eggs was determined to be 0.004 mumol.min-1.mg-1. The concentration of putative dynein catalytic polypeptides was therefore determined from the ratio of the specific activities of crude to pure cytoplasmic dynein catalytic polypeptide to be 0.33% of soluble protein, or 99 pg per egg. This is approximately 3-fold greater than the mass of dynein catalytic polypeptides estimated to be present in cilia at the blastula stage of sea urchin embryonic development. The large amount of cytoplasmic dynein in unfertilized eggs suggests that it could act as a precursor of embryonic ciliary dynein. Three minor peaks of ATPase activity were also resolved from cytosolic extracts and shown to be dynein-like. However, their GTPase activities were 2-4-fold higher than that of cytoplasmic dynein, raising the possibility that egg cytoplasm may contain several isoforms of dynein.  相似文献   

17.
Following the completion of oogenesis and oocyte maturation, histone mRNAs are synthesized and stored in the sea urchin egg pronucleus. Histone mRNAs are the only mRNAs that are not polyadenylated but instead end in a stem-loop which has been conserved in evolution. The 3' end binds the stem-loop-binding protein (SLBP), and SLBP is required for histone pre-mRNA processing as well as translation of the histone mRNAs. A cDNA encoding a 59 kDa sea urchin SLBP (suSLBP) has been cloned from an oocyte cDNA library. The suSLBP contains an RNA-binding domain that is similar to the RNA-binding domain found in SLBPs from other species, although there is no similarity between the rest of the suSLBP and other SLBPs. The suSLBP is present at constant levels in eggs and for the first 12 h of development. The levels of suSLBP then decline and remain at a low level for the rest of embryogenesis. The suSLBP is concentrated in the egg pronucleus and is released from the nucleus only when cells enter the first mitosis. SuSLBP expressed by in vitro translation does not bind the stem-loop RNA, suggesting that suSLBP is modified to activate RNA binding in sea urchin embryos.  相似文献   

18.
Prevention of polyspermic fertilization in sea urchins (Jaffe, 1976, Nature (Lond.). 261:68-71) and the worm Urechis (Gould-Somero, Jaffe, and Holland, 1979, J. Cell Biol. 82:426-440) involves an electrically mediated fast block. The fertilizing sperm causes a positive shift in the egg's membrane potential; this fertilization potential prevents additional sperm entries. Since in Urechis the egg membrane potential required to prevent fertilization is more positive than in the sea urchin, we tested whether in a cross-species fertilization the blocking voltage is determined by the species of the egg or by the species of the sperm. With some sea urchin (Strongylocentrotus purpuratus) females, greater than or equal to 90% of the eggs were fertilized by Urechis sperm; a fertilization potential occurred, the fertilization envelope elevated, and sometimes decondensing Urechis sperm nuclei were found in the egg cytoplasm. After insemination of sea urchin eggs with Urechis sperm during voltage clamp at +50 mV, fertilization (fertilization envelope elevation) occurred in only nine of twenty trials, whereas, at +20 mV, fertilization occurred in ten of ten trials. With the same concentration of sea urchin sperm, fertilization of sea urchin eggs occurred, in only two of ten trials at +20 mV. These results indicate that the blocking voltage for fertilization in these crosses is determined by the sperm species, consistent with the hypothesis that the fertilization potential may block the translocation within the egg membrane of a positively charged component of the sperm.  相似文献   

19.
The aminoguanide, methylglyoxal bis(guanylhydrazone) (MGBG), was shown to stimulate phosphorylation of RR-SRC, a synthetic protein tyrosine kinase (PTK) substrate, and different levels of tyrosyl phosphorylation of endogenous proteins in a sea urchin egg membrane-cortex preparation. Stimulating protein tyrosine kinase activity in the sea urchin egg stimulated intracellular Ca2+ release, because microinjection of 1-5 mM of MGBG into unfertilized eggs triggered a transient rise in intracellular Ca2+ activity ([Ca2+]i) after a brief latent period. Pretreating eggs with PTK-specific inhibitors, genistein or tyrphostin B42, significantly inhibited the MGBG-induced rise in [Ca2+]i. Methylglyoxal bis(guanylhydrazone) stimulation of PTK activities in the unfertilized sea urchin egg appeared to trigger Ca2+ release through phospholipase C (PLC)-dependent inositol 1,4,5-trisphosphate (InsP3) production. The MGBG-induced Ca2+ response could be suppressed in eggs preloaded with the InsP3 receptor antagonist, heparin, and was reduced in eggs pretreated with U73122, a PLC inhibitor. However, the response was unchanged in eggs treated with nicotinamide, an inhibitor of ADP-ribosyl cyclase, or nifedipine, an inhibitor of nicotinic acid adenine dinucleotide phosphate activity. These results suggest that MGBG may be useful as a chemical agonist of PTK in sea urchin eggs and allow direct testing of the PTK requirement for the transient rise in [Ca2+]i in sea urchin eggs during fertilization. Although genistein was observed to significantly delay the onset, the sperm-induced Ca2+ response in PTK inhibitor-loaded eggs otherwise appeared normal. Therefore, it was concluded that sea urchin eggs contain a PTK-dependent pathway that can mediate intracellular Ca2+ release, but PTK activity does not appear to be required for the fertilization response.  相似文献   

20.
Fertilization in the sea urchin is accompanied by rapid reorganization of the egg endoplasmic reticulum (ER). ER-derived vesicles contribute to one of three classes of membranes used in assembling the male pronuclear envelope in vitro. We provide here biochemical evidence for the rearrangement of sea urchin egg cytoplasmic membrane domains at fertilization up to the first mitosis, with respect to two nuclear envelope markers, lamin B and lamin B receptor (LBR), using purified vesicles prepared from homogenates fractionated by floatation on sucrose gradients. In unfertilized eggs, immunoprecipitation data indicate that most of lamin B and LBR are localized in the same vesicles but do not interact. By 3 min post-fertilization, both proteins are more widely distributed across the gradients and by 12 min most of lamin B and LBR are localized in vesicles of different densities. This partitioning is maintained throughout S phase. At mitosis, most lamin B and LBR remain in distinct vesicles, while a small proportion of lamin B and LBR, likely derived from the disassembled nuclear envelope, associate in a minor subset of vesicles. The results illustrate a dynamic reorganization of egg cytoplasmic membranes at fertilization, and the establishment of distinct membrane domains enriched in specific nuclear envelope markers during the first cell cycle of sea urchin development. Additionally, we demonstrate that male pro-nuclear membrane assembly occurs only when both cytosol and membranes originate from fertilized but not unfertilized eggs, suggesting that fertilization-induced membrane rearrangements contribute to the ability of the egg to assemble the male pronuclear envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号