首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
D. L. Woodworth  K. N. Kreuzer 《Genetics》1996,143(3):1081-1090
Many antitumor agents and antibiotics affect cells by interacting with type II topoisomerases, stabilizing a covalent enzyme-DNA complex. A pathway of recombination can apparently repair this DNA damage. In this study, transposon mutagenesis was used to identify possible components of the repair pathway in bacteriophage T4. Substantial increases in sensitivity to the antitumor agent m-AMSA [4'-(9-acridinyl-amino) methanesulfon-m-anisidide] were found with transposon insertion mutations that inactivate any of six T4-encoded proteins: UvsY (DNA synaptase accessory protein), UvsW (unknown function), Rnh (RNase H and 5' to 3' DNA exonuclease), α-gt (α-glucosyl transferase), gp47.1 (uncharacterized), and NrdB (β subunit of ribonucleotide reductase). The role of the rnh gene in drug sensitivity was further characterized. First, an in-frame rnh deletion mutation was constructed and analyzed, providing evidence that the absence of Rnh protein causes hypersensitivity to m-AMSA. Second, the m-AMSA sensitivity of the rnh-deletion mutant was shown to require a drug-sensitive T4 topoisomerase. Third, analysis of double mutants suggested that uvsW and rnh mutations impair a common step in the recombinational repair pathway for m-AMSA-induced damage. Finally, the rnh-deletion mutant was found to be hypersensitive to UV, implicating Rnh in recombinational repair of UV-induced damage.  相似文献   

2.
Stohr BA  Kreuzer KN 《Genetics》2001,158(1):19-28
Type II topoisomerase inhibitors are used to treat both tumors and bacterial infections. These inhibitors stabilize covalent DNA-topoisomerase cleavage complexes that ultimately cause lethal DNA damage. A functional recombinational repair apparatus decreases sensitivity to these drugs, suggesting that topoisomerase-mediated DNA damage is amenable to such repair. Using a bacteriophage T4 model system, we have developed a novel in vivo plasmid-based assay that allows physical analysis of the repair products from one particular topoisomerase cleavage site. We show that the antitumor agent 4'-(9-acridinylamino)methanesulphon-m-anisidide (m-AMSA) stabilizes the T4 type II topoisomerase at the strong topoisomerase cleavage site on the plasmid, thereby stimulating recombinational repair. The resulting m-AMSA-dependent repair products do not form in the absence of functional topoisomerase and appear at lower drug concentrations with a drug-hypersensitive topoisomerase mutant. The appearance of repair products requires that the plasmid contain a T4 origin of replication. Finally, genetic analyses demonstrate that repair product formation is absolutely dependent on genes 32 and 46, largely dependent on genes uvsX and uvsY, and only partly dependent on gene 49. Very similar genetic requirements are observed for repair of endonuclease-generated double-strand breaks, suggesting mechanistic similarity between the two repair pathways.  相似文献   

3.
Summary Bacteriophage T4 provides a simple model system in which to examine the mechanism of action of antitumor agents that have been proposed to attack type II DNA topoisomerases. Prior results demonstrated that T4 type II DNA topoisomerase is the target of antitumor agent 4-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) in phage-infected Escherichia coli: a point mutation in topoisomerase structural gene 39 was shown to confer both m-AMSA-resistant phage growth and m-AMSA-insensitive topoisomerase activity. We report here that a point mutation in T4 topoisomerase structural gene 52 can also independently render both phage growth and topoisomerase activity resistant to m-AMSA. The DNA relaxation and DNA cleavage activities of this newly isolated mutant topoisomerase were significantly insensitive to m-AMSA. The drug-resistance mutation in gene 52, as well as that in gene 39, alters the DNA cleavage site specificity of wild-type T4 topoisomerase. This fording is consistent with a mechanism of drug action in which both topoisomerase and DNA participate in formation of the drug-binding site.  相似文献   

4.
Summary Ultraviolet mutagenesis in bacteriophage T4 proceeds via error-prone repair (EPR) and requires the functional integrity of the uvsWXY system which mediates genetic recombination, recombinational repair, and mutability by diverse DNA damaging agents. Current opinion holds that mutagens acting through EPR generate DNA damage which blocks the progress of the replication complex and that EPR consists of the facilitated bypass of such inaccurate, damaged templates. This notion predicts that the T4 DNA polymerase (encoded by gene 43) mediates EPR in UV irradiated phage T4. This prediction is verified by the discovery that gene 43 mutations often enhance or reduce UV mutagenesis (which is scored by the induction of r mutants) and sometimes change its specificity.  相似文献   

5.
Y Yamashita  S Kawada  N Fujii  H Nakano 《Biochemistry》1991,30(24):5838-5845
Saintopin is an antitumor antibiotic recently discovered in mechanistically oriented screening using purified calf thymus DNA topoisomerases. Saintopin induced topoisomerase I mediated DNA cleavage comparable to that of camptothecin, and topoisomerase II mediated DNA cleavage equipotent to those of 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) or 4'-demethylepipodophyllotoxin 9-(4,6-O-ethylidene-beta-D-glucopyranoside) (VP-16). Treatment of a reaction mixture containing saintopin and topoisomerase I or II with either elevated temperature (65 degrees C) or higher salt concentration (0.5 M NaCl) resulted in a substantial reduction in DNA cleavage, suggesting that the topoisomerase I and II mediated DNA cleavage induced by saintopin is through the mechanism of stabilizing the reversible enzyme-DNA "cleavable complex". Consistent with the cleavable complex formation with both topoisomerases, saintopin inhibited catalytic activities of both topoisomerase I and topoisomerase II. The DNA cleavage intensity pattern induced by saintopin with topoisomerase I was different from that by camptothecin. A difference in cleavage pattern was also detected between saintopin and m-AMSA or VP-16 in topoisomerase II mediated DNA cleavage. DNA unwinding assay using T4 DNA ligase showed that saintopin is a weak DNA intercalator like m-AMSA. Thus, saintopin represents a new class of antitumor agent that can induce both mammalian DNA topoisomerase I and mammalian DNA topisomerase II mediated DNA cleavage.  相似文献   

6.
Cells released from quiescence exhibit increased levels of the DNA-modifying enzyme topoisomerase II, a nuclear protein which is also a target for antitumour drugs such as VP-16 (etoposide) and m-AMSA (4',9'-acridinylamino-methanesulfon-m-anisidide). By using Western blotting, DNA-protein crosslinking and drug-induced DNA cleavage to detect topoisomerase II, we show here that oestrogen stimulation of T-47D human breast cancer cells results in increased cellular enzyme content at least 4hr prior to enhancement of DNA synthesis. Taken in conjunction with previous findings, these results suggest that oestrogen enhances topoisomerase II synthesis within a G1-phase cell subset.  相似文献   

7.
Topoisomerase Involvement in Multiplicity Reactivation of Phage T4   总被引:2,自引:1,他引:1       下载免费PDF全文
The products of phage T4 genes 39, 52 and probably 60 have been previously characterized as forming a type II DNA topoisomerase. Other evidence suggested that this topoisomerase promotes normal initiation of DNA replication, and that when it is defective its loss is partially compensated for by the host gyrase. We present evidence here that mutants defective in genes 39, 52 and 60 have reduced ability to carry out multiplicity reactivation (MR, a form of recombinational repair) of phage DNA damaged either by mitomycin C (MMC) or psoralen plus near-UV light (PUVA). We also observed that there is not extensive superhelicity in the intracellular phage DNA either in the presence or absence of the phage topoisomerase. This tends to rule out the possibility that the topoisomerase influences MR by controlling the general superhelicity of the phage DNA. The dependence of MR on topoisomerase could occur in several possible ways. However, we favor the explanation that the lesions are bypassed by a postreplication recombinational repair process that is influenced by the topoisomerase through its role in initiating replication.  相似文献   

8.
Numerous antitumor and antibacterial agents inhibit type II DNA topoisomerases, yielding, in each case, a complex of enzyme covalently bound to cleaved DNA. We are investigating the mechanism of inhibitor action by using the type II DNA topoisomerase of bacteriophage T4 as a model. The T4 topoisomerase is the target of antitumor agent 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA) in T4-infected Escherichia coli. Two m-AMSA-resistant phage strains were previously isolated, one with a point mutation in topoisomerase subunit gene 39 and the other with a point mutation in topoisomerase subunit gene 52. We report here that the wild-type T4 topoisomerase is inhibited by six additional antitumor agents that also inhibit the mammalian type II topoisomerase: ellipticine, 9-OH-ellipticine, 2-me-9-OH-ellipticinium acetate, mitoxantrone diacetate, teniposide, and etoposide. Further, one or both of the m-AMSA-resistance mutations alters the enzyme sensitivity to each of these agents, conferring either cross-resistance or enhanced sensitivity. Finally, the gene 39 mutation confers on T4 topoisomerase a DNA gyrase-like sensitivity to the gyrase inhibitor oxolinic acid, thus establishing a direct link between the mechanism of action of the anti-bacterial quinolones and that of the antitumor agents. These results strongly suggest that diverse inhibitors of type II topoisomerases share a common binding site and a common mechanism of action, both of which are apparently conserved in the evolution of the type II DNA topoisomerases. Alterations in DNA cleavage site specificity caused by either the inhibitors or the m-AMSA-resistance mutations favor the proposal that the inhibitor binding site is composed of both protein and DNA.  相似文献   

9.
M J Robinson  N Osheroff 《Biochemistry》1990,29(10):2511-2515
In order to elucidate the mechanism by which the intercalative antineoplastic drug 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) stabilizes the covalent topoisomerase II-DNA cleavage complex, the effect of the drug on the DNA cleavage/religation reaction of the type II enzyme from Drosophila melanogaster was examined. At a concentration of 60 microM, m-AMSA enhanced topoisomerase II mediated double-stranded DNA breakage approximately 5-fold. Drug-induced stabilization of the enzyme-DNA cleavage complex was readily reversed by the addition of EDTA or salt. When a DNA religation assay was utilized, m-AMSA was found to inhibit the topoisomerase II mediated rejoining of cleaved DNA approximately 3.5-fold. This result is similar to that previously reported for the effects of etoposide on the activity of the Drosophila enzyme [Osheroff, N. (1989) Biochemistry 28, 6157-6160]. Thus, it appears that structurally disparate classes of topoisomerase II targeted antineoplastic drugs stabilize the enzyme's DNA cleavage complex primarily by interfering with the ability of topoisomerase II to religate DNA.  相似文献   

10.
Amsacrine (m-AMSA) is an anticancer agent that displays activity against refractory acute leukemias as well as Hodgkin's and non-Hodgkin's lymphomas. The drug is comprised of an intercalative acridine moiety coupled to a 4'-amino-methanesulfon-m-anisidide headgroup. m-AMSA is historically significant in that it was the first drug demonstrated to function as a topoisomerase II poison. Although m-AMSA was designed as a DNA binding agent, the ability to intercalate does not appear to be the sole determinant of drug activity. Therefore, to more fully analyze structure-function relationships and the role of DNA binding in the action of m-AMSA, we analyzed a series of derivatives for the ability to enhance DNA cleavage mediated by human topoisomerase IIα and topoisomerase IIβ and to intercalate DNA. Results indicate that the 3'-methoxy (m-AMSA) positively affects drug function, potentially by restricting the rotation of the headgroup in a favorable orientation. Shifting the methoxy to the 2'-position (o-AMSA), which abrogates drug function, appears to increase the degree of rotational freedom of the headgroup and may impair interactions of the 1'-substituent or other portions of the headgroup within the ternary complex. Finally, the nonintercalative m-AMSA headgroup enhanced enzyme-mediated DNA cleavage when it was detached from the acridine moiety, albeit with 100-fold lower affinity. Taken together, our results suggest that much of the activity and specificity of m-AMSA as a topoisomerase II poison is embodied in the headgroup, while DNA intercalation is used primarily to increase the affinity of m-AMSA for the topoisomerase II-DNA cleavage complex.  相似文献   

11.
Recently, hydrogen peroxide and its free-radical product, the hydroxyl radical (OH.) have been identified as major sources of DNA damage in living organisms. They occur as ubiquitous metabolic by-products and, in humans, cause several thousand damages in a cell's DNA per day. They are thought to be a major source of DNA damage leading to aging and cancer in multicellular organisms. This raises two questions. First, what pathways are used in repair of DNA damages caused by H2O2 and OH.? Second, a new theory has been proposed that sexual reproduction (sex) evolved to promote repair of DNA in the germ line of organisms. If this theory is correct, then the type of repair specifically available during the sexual process should be able to deal with important natural lesions such as those produced by H2O2 and OH. . Does this occur? We examined repair of hydrogen peroxide damage to DNA, using a standard bacteriophage T4 test system in which sexual reproduction is either permitted or not permitted. Post-replication recombinational repair and denV-dependent excision repair are not dependent on sex. Both of these processes had little or no effect on lethal H2O2 damage. Also, an enzyme important in repair of H2O2-induced DNA damage in the E. coli host cells, exonuclease III, was not utilized in repair of lethal H2O2 damage to the phage. However, multiplicity reactivation, a recombinational form of repair depending on the sexual interaction of two or more of the bacteriophage, was found to repair lethal H2O2 damages efficiently. Our results lend support to the repair hypothesis of sex. Also the homology-dependent recombinational repair utilized in the phage sexual process may be analogous to the homology-dependent recombination which is widespread in diploid eucaryotes. The recombinational repair pathway found in phage T4 may thus be a widely applicable model for repair of the ubiquitous DNA damage caused by endogenous oxidative reactions.  相似文献   

12.
M J Robinson  N Osheroff 《Biochemistry》1991,30(7):1807-1813
The post-strand-passage DNA cleavage/religation equilibrium of Drosophila melanogaster topoisomerase II was examined. This was accomplished by including adenyl-5'-yl imidodiphosphate, a nonhydrolyzable ATP analogue which supports strand passage but not enzyme turnover, in assays. Levels of post-strand-passage enzyme-mediated DNA breakage were 3-5 times higher than those generated by topoisomerase II prior to the strand-passage event. This finding correlated with a decrease in the apparent first-order rate of topoisomerase II mediated DNA religation in the post-strand-passage cleavage complex. Since previous studies demonstrated that antineoplastic drugs stabilize the pre-strand-passage cleavage complex of topoisomerase II by impairing the enzyme's ability to religate cleaved DNA [Osheroff, N. (1989) Biochemistry 28, 6157-6160; Robinson, M.J., & Osheroff, N. (1990) Biochemistry 29, 2511-2515], the effects of 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposide on the enzyme's post-strand-passage DNA cleavage complex were characterized. Both drugs stimulated the ability of topoisomerase II to break double-stranded DNA after strand passage. As determined by two independent assay systems, m-AMSA and etoposide stabilized the enzyme's post-strand-passage DNA cleavage complex primarily by inhibiting DNA religation. These results strongly suggest that both the pre- and post-strand-passage DNA cleavage complexes of topoisomerase II serve as physiological targets for these structurally disparate antineoplastic drugs.  相似文献   

13.
Protein-associated DNA cleavage is produced in mammalian cells treated with active antileukemic DNA intercalating agents such as 4'(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA). We have examined the ability of m-AMSA to produce DNA cleavage in 3 human myeloid leukemic cell lines with different sensitivities to the cytotoxic actions of m-AMSA to see if the magnitude of DNA cleavage correlated with the degree of m-AMSA sensitivity. DNA alkaline elution was used to quantify DNA cleavage. The amount of m-AMSA-induced DNA cleavage in the two lines sensitive to m-AMSA was 1-2 orders of magnitude greater than that in an m-AMSA-resistant leukemic line. The m-AMSA resistant line had been developed by prolonged exposure of one of the sensitive lines to m-AMSA. This finding was not secondary to a decreased uptake of m-AMSA in the resistant cell line. m-AMSA treatment of the nuclei isolated from the three lines produced DNA cleavage frequencies comparable to the cleavage frequencies produced by m-AMSA treatment of the whole cells from which the nuclei were isolated. The DNA cleaving ability stimulated by m-AMSA is thought to be mediated by drug-induced effects on topoisomerase II, a nuclear enzyme that mediates alterations in DNA conformation. Alterations in the manner in which this enzyme interacts with antineoplastic agents may explain the emergence of resistant cells following initially successful chemotherapy.  相似文献   

14.
15.
HL-60/AMSA is a human leukemia cell line that is 100 times more resistant to the cytotoxic actions of the antineoplastic, topoisomerase II-reactive DNA intercalating acridine derivative amsacrine (m-AMSA) than is its parent HL-60 line. HL-60/AMSA cells are minimally resistant to etoposide, a topoisomerase II-reactive drug that does not intercalate. Previously we showed that HL-60 topoisomerase II activity in cells, nuclei, or nuclear extracts was sensitive to m-AMSA and etoposide, while HL-60/AMSA topoisomerase II was resistant to m-AMSA but sensitive to etoposide. Now we show that purified topoisomerase II from the two cell lines exhibits the same drug sensitivity or resistance as that in the nuclear extracts although the magnitude of the m-AMSA resistance of HL-60/AMSA topoisomerase II in vitro is not as great as the resistance of the intact HL-60/AMSA cells. In addition HL-60/AMSA cells are cross-resistant to topoisomerase II-reactive intercalators from the anthracycline and ellipticine families and the pattern of sensitivity or resistance to the cytotoxic actions of the various topoisomerase II-reactive drugs is paralleled by topoisomerase II-reactive drug-induced DNA cleavage and protein cross-link production in cells and the production of drug-induced, topoisomerase II-mediated DNA cleavage and protein cross-linking in isolated biochemical systems. In addition to its lowered sensitivity to intercalators, HL-60/AMSA differed from HL-60 in 1) the susceptibility of its topoisomerase II to stimulation of DNA topoisomerase II complex formation by ATP, 2) the catalytic activity of its topoisomerase II in an ionic environment chosen to reproduce the environment found within the living cell, and 3) the observed restriction enzyme pattern on a Southern blot probed with a cDNA for human topoisomerase II. These data indicate that an m-AMSA-resistant form of topoisomerase II contributes to the resistance of HL-60/AMSA to m-AMSA and to other topoisomerase II-reactive DNA intercalating agents. The drug resistance is associated with additional biochemical and molecular alterations that may be important determinants of cellular sensitivity or resistance to topoisomerase II-reactive drugs.  相似文献   

16.
L Yang  T C Rowe  E M Nelson  L F Liu 《Cell》1985,41(1):127-132
The antitumor drug, m-AMSA (4'-(9-acridinylamino)-methanesulfon-m-anisidide), is known to interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II by blocking the enzyme-DNA complex in its putative cleavable state. Treatment of SV40 virus infected monkey cells with m-AMSA resulted in both single- and double-stranded breaks on SV40 viral chromatin. These strand breaks are unusual because they are covalently associated with protein. Immunoprecipitation results suggest that the covalently linked protein is DNA topoisomerase II. These results are consistent with the proposal that the drug action in vivo involves the stabilization of a cleavable complex between topoisomerase II and DNA in chromatin. Mapping of these double-stranded breaks on SV40 viral DNA revealed multiple topoisomerase II cleavage sites. A major topoisomerase II cleavage site was preferentially induced during late infection and was mapped in the DNAase I hypersensitive region of SV40 chromatin.  相似文献   

17.
Topoisomerase II is an essential enzyme that is targeted by a number of clinically valuable anticancer drugs. One class referred to as topoisomerase II poisons works by increasing the cellular level of topoisomerase II-mediated DNA breaks, resulting in apoptosis. Another class of topoisomerase II-directed drugs, the bis-dioxopiperazines, stabilizes the conformation of the enzyme where it attains an inactive salt-stable closed clamp structure. Bis-dioxopiperazines, similar to topoisomerase II poisons, induce cell killing, but the underlying mechanism is presently unclear. In this study, we use three different biochemically well characterized human topoisomerase IIalpha mutant enzymes to dissect the catalytic requirements needed for the enzyme to cause dominant sensitivity in yeast to the bis-dioxopirazine ICRF-193 and the topoisomerase II poison m-AMSA. We find that the clamp-closing activity, the DNA cleavage activity, and even both activities together are insufficient for topoisomerase II to cause dominant sensitivity to ICRF-193 in yeast. Rather, the strand passage event per se is an absolute requirement, most probably because this involves a simultaneous interaction of the enzyme with two DNA segments. Furthermore, we show that the ability of human topoisomerase IIalpha to cause dominant sensitivity to m-AMSA in yeast does not depend on clamp closure or strand passage but is directly related to the capability of the enzyme to respond to m-AMSA with increased DNA cleavage complex formation.  相似文献   

18.
Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage λ recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation.  相似文献   

19.
Topoisomerase II is a ubiquitous enzyme that removes knots and tangles from the genetic material by generating transient double-strand DNA breaks. While the enzyme cannot perform its essential cellular functions without cleaving DNA, this scission activity is inherently dangerous to chromosomal integrity. In fact, etoposide and other clinically important anticancer drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. Cells rely heavily on recombination to repair double-strand DNA breaks, but the specific pathways used to repair topoisomerase II-generated DNA damage have not been defined. Therefore, Saccharomyces cerevisiae was used as a model system to delineate the recombination pathways that repair DNA breaks generated by topoisomerase II. Yeast cells that expressed wild-type or a drug-hypersensitive mutant topoisomerase II or overexpressed the wild-type enzyme were examined. Based on cytotoxicity and recombination induced by etoposide in different repair-deficient genetic backgrounds, double-strand DNA breaks generated by topoisomerase II appear to be repaired primarily by the single-strand invasion pathway of homologous recombination. Non-homologous end joining also was triggered by etoposide treatment, but this pathway was considerably less active than single-strand invasion and did not contribute significantly to cell survival in S.cerevisiae.  相似文献   

20.
O'Reilly EK  Kreuzer KN 《Biochemistry》2002,41(25):7989-7997
Bacteriophage T4 provides a useful model system for dissecting the mechanism of action of antitumor agents that target type II DNA topoisomerases. Many of these inhibitors act by trapping the cleavage complex, a covalent complex of enzyme and broken DNA. Previous analysis showed that a drug-resistant T4 mutant harbored two amino acid substitutions (S79F, G269V) in topoisomerase subunit gp52. Surprisingly, the single amino acid substitution, G269V, was shown to confer hypersensitivity in vivo to m-AMSA and oxolinic acid [Freudenreich, C. H., et al. (1998) Cancer Res. 58, 1260-1267]. We purified this G269V mutant enzyme and found it to be hypersensitive to a number of cleavage-inducing inhibitors including m-AMSA, VP-16, mitoxantrone, ellipticine, and oxolinic acid. While the mutant enzyme did not exhibit altered DNA cleavage site specificity compared to the wild-type enzyme, it did display an apparent 10-fold increase in drug-independent DNA cleavage. This suggests a novel mechanism of altered drug sensitivity in which the enzyme equilibrium has been shifted to favor the cleavage complex, resulting in an increase in the concentration of cleavage intermediates available to inhibitors. Mutations that alter drug sensitivities tend to cluster within two specific regions of all type II topoisomerases. Residue G269 of gp52 lies outside of these regions, and it is therefore not surprising that G269V leads to a unique mechanism of drug hypersensitivity. We believe that this mutant defines a new category of type II topoisomerase mutants, namely, those that are hypersensitive to all inhibitors that stabilize the cleavage complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号