首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence is presented for a testicular protein kinase activity capable of stimulating the activity in vitro of a partially purified preparation of the testicular galactolipid sulphotransferase. This enzyme is responsible for the synthesis of the major mammalian testicular glycolipid, sulphogalactosylglycerol, and is an early marker of differentiation during spermatogenesis. This stimulatory activity has been separated by affinity chromatography, using 3',5'-ADP-agarose, from both the detergent-solubilized microsomes (microsomal fractions) and the soluble fraction of the testicular homogenate. The stimulator was eluted from the affinity matrix by either a salt, or, more selectively, a cyclic AMP gradient. Thus this matrix can function as an analogue of 3',5'-cyclic AMP. The activity of the sulphotransferase stimulator was ATP-dependent and coincident with protein kinase activity. Sulphotransferase activity was also stimulated in the presence of commercial preparations of cyclic AMP-dependent protein kinase and stimulation was prevented in the presence of kinase inhibitors. Our results suggest that sulphogalactolipid biosynthesis is regulated by a phosphorylation process during spermatogenesis. In addition, our results suggest that affinity chromatography on 3',5'-ADP-agarose may provide a general method for the purification of cyclic AMP-dependent kinases.  相似文献   

2.
The synthesis of sulphatoxygalactosylacylalkylglycerol (SGG) is a differentiation marker of mammalian spermatogenesis. Maximal sulphation is observed in rat testis at about 20 days after birth and rapidly declines to low levels as the testis matures. The present data show that this decline in SGG synthesis is due to the appearance of an inhibitor of galactolipid sulphation. The inhibitor is a soluble testicular factor which is first detected at about 25 days after birth. Testicular homogenate can sulphate exogenous galactosylacylalkylglycerol (GG), galactosylceramide (GC) and lactosylceramide (LC) in vitro. The testicular inhibitor is most effective in preventing GG sulphation and inhibits GC and LC sulphation to a lesser extent; this correlates with the finding that glycolipid sulphation shifts from SGG production in 20-day-old testis to GC and LC sulphation at later stages of testicular development. The effect of the inhibitor on sulphotransferase activity from brain and kidney was also determined. The inhibitor decreased the sulphation of GG in vitro by both testis and kidney, inhibited testicular sulphation of GC less effectively and had no effect on GC sulphation by kidney and brain homogenates. A 9500-fold purification of the inhibitory activity has been obtained in a fraction isolated by h.p.l.c.  相似文献   

3.
Southern blot analysis with liver DNA from a unique series of recombinant (R10, R11, R16, R18, R21, and R22), congenic (Y0.1U.grc+, Y0.1U.grc+/Y0.1L.grc, and Y0.1L.grc) and inbred rats has been performed to examine the restriction fragment length polymorphisms of class I genes. After digestion with Xba I or Eco RI, the genomic DNA was resolved on agarose gels, was transferred to nitrocellulose membranes, and was hybridized with murine H-2 cDNA probes. Eighteen to 25 bands of varying intensities could be clearly resolved in any given strain. Analysis of these hybridization patterns detected restriction fragment length polymorphisms that permitted the assignment of 17 specific fragments to regions within the major histocompatibility complex: RT1.A, RT1.B/D, and the RT1.E-grc-T1 alpha region. Fragments have been identified that are specific for grc, grc+, and RT1.E, and mark the junction sites between these loci. In addition, several markers identify the region around the sites of recombination in some strains. The hybridization pattern of the R18 recombinant had a unique band that specified a point of recombination within the grc. The recombinant R11 presented a unique restriction pattern unrelated to either of the parental strains or other related strains. This result suggests that R11 arose from a recombination event(s) undetected by conventional serologic methods.  相似文献   

4.
This study was undertaken to examine further the behavior of the Hre gene and its interaction with the growth and reproduction complex genes (grc) in the (Hre x BN)F2, Hre x (Hre x BN)F1 and (BIL/1 x Hre) F2 crosses. The blaze characteristic of rats carrying the Hre gene was linked to testicular weight but not to the body weight or to the major histocompatibility complex (MHC). The Hre defect was genetically unrelated to the testicular defect caused by the grc. The Hre gene had a variable effect on the testes of the rats in different crosses, and it could be categorized into three distinct stages of progressively greater severity. In the cross in which the parents carried the Hre/+ and grc/grc genes, respectively, there was a decreased litter size, an increased male:female ratio in the offspring and poor reproductive performance when compared to a similar cross in which the Hre/+ gene alone was segregating. There was, however, no effect on the severity of the testicular defect. Thus, the grc can interact with the Hre gene to cause embryonic death, which appears to be selective for females, but not to influence the severity of the testicular defect.  相似文献   

5.
Testicular galactolipid sulfotransferase activity is an early marker of differentiation during mammalian spermatogenesis. The enzyme will catalyze the sulfation of galactosylglycerol in the 3' position of the galactose moiety at 37 degrees C in vitro. However, sulfotransferase activity was found to be completely lost on preincubation of the solubilized enzyme preparation at 37 degrees C. This loss of activity was completely prevented by inclusion of ATP and Triton in the preincubation step. This protective effect was synergistic, pH dependent and correlated with an inhibition of endogenous phosphatase activity. These results are interpreted to suggest that the galactolipid sulfotransferase may be regulated by a phosphorylation mechanism.  相似文献   

6.
An initial mapping analysis of growth and reproduction complex (grc) and grc+ genomic DNA identified several restriction fragment length polymorphisms specific for the grc region of the MHC. To analyze further the genomic organization and structure of the grc, a cosmid library was constructed from a grc+-bearing strain (R21). One cosmid cluster, encompassing 41.4 kb of DNA, contained four, or possibly five, class I genes that mapped to the RT1.E-grc region Two unique non-class I fragments were isolated from certain cosmids within this cluster. These fragments were hybridized to genomic DNA derived from five rat strains (BIL/2, R18, R21, R22, and BIL/1), and the results showed that grc-bearing rats have a deletion of at least 3.1 kb of DNA in the region immediately adjacent to the MHC. The loss of the genes in this region is probably the cause of the growth and reproductive defects in these animals and probably also of their increased susceptibility to chemical carcinogens.  相似文献   

7.
Sakurai I  Mizusawa N  Wada H  Sato N 《Plant physiology》2007,145(4):1361-1370
The galactolipid digalactosyldiacylglycerol (DGDG) is present in the thylakoid membranes of oxygenic photosynthetic organisms such as higher plants and cyanobacteria. Recent x-ray crystallographic analysis of protein-cofactor supercomplexes in thylakoid membranes revealed that DGDG molecules are present in the photosystem II (PSII) complex (four molecules per monomer), suggesting that DGDG molecules play important roles in folding and assembly of subunits in the PSII complex. However, the specific role of DGDG in PSII has not been fully clarified. In this study, we identified the dgdA gene (slr1508, a ycf82 homolog) of Synechocystis sp. PCC6803 that presumably encodes a DGDG synthase involved in the biosynthesis of DGDG by comparison of genomic sequence data. Disruption of the dgdA gene resulted in a mutant defective in DGDG synthesis. Despite the lack of DGDG, the mutant cells grew as rapidly as the wild-type cells, indicating that DGDG is not essential for growth in Synechocystis. However, we found that oxygen-evolving activity of PSII was significantly decreased in the mutant. Analyses of the PSII complex purified from the mutant cells indicated that the extrinsic proteins PsbU, PsbV, and PsbO, which stabilize the oxygen-evolving complex, were substantially dissociated from the PSII complex. In addition, we found that heat susceptibility but not dark-induced inactivation of oxygen-evolving activity was notably increased in the mutant cells in comparison to the wild-type cells, suggesting that the PsbU subunit is dissociated from the PSII complex even in vivo. These results demonstrate that DGDG plays important roles in PSII through the binding of extrinsic proteins required for stabilization of the oxygen-evolving complex.  相似文献   

8.
The synthesis of sulfogalactosyl-glycerolipid (SGG) is a differentiation marker in spermatogenesis restricted to the zygotene and early pachytene spermatocytes. The galactolipid sulfotransferase responsible for the synthesis of SGG is regulated by a phosphorylation mechanism. The activity of this enzyme is reduced in cells later in spermatogenesis by a low molecular weight inhibitor, which can be extracted in organic solvents and purified by reverse phase high pressure liquid chromatography (HPLC). This purified inhibitor is a potent postreceptor insulin-mimetic, which stimulates adipocyte lipogenesis more effectively than does insulin. Phosphoinositol (PI) glycolipids have been proposed as second messengers of the insulin phosphorylation cascade. These species contain a nonacetylated glucosamine, which renders them liable to cleavage by deamidation. The activity of the sulfotransferase inhibitor was lost following nitrous acid deamidation and was labile to PI specific phospholipase C digestion. Insulin and insulin-like growth factor I were found to inhibit germ cell synthesis of SGG in vitro to some degree but had no direct effect on the testicular galacto-lipid sulfotransferase assay. These results indicate that the sulfotransferase inhibitor is a glycosyl phosphoinositide similar to the lipid species, which mediate insulin signal transduction and suggest that germ cell SGG biosynthesis may be regulated by a receptor-mediated phosphorylation pathway. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The galactosylation steps in the biosynthesis of galactolipids involve two different enzymes; a UDP-Gal:diacylglycerol galactosyltransferase and a galactolipid:galactolipid galactosyltransferase. Previous localization studies have shown that in spinach these enzymes are located in the chloroplast envelope. Our results with peas (Pisum sativum var Laxton's Progress No. 9) confirm these results and extend the localization by providing evidence that the galactosyltransferases are in the outer membrane of the envelope. The specific activity of UDP-Gal:diacylglycerol galactosyltransferase in outer membrane preparations was 6 to 10 times greater than that exhibited by inner membrane preparations. In addition, using quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was possible to show that the UDP-Gal:diacylglycerol galactosyltransferase activity associated with inner membrane preparations could be accounted for by outer membrane contamination. It is concluded from these results that this enzyme is located predominantly, if not exclusively, in the outer membrane of the envelope. An analysis of the galactolipid products synthesized by the highly purified outer membrane showed that the galactolipid:galactolipid galactosyltransferase is also present, suggesting that this enzyme is also an outer membrane enzyme. The implication of these results is that the final assembly of galactolipids is carried out on the outer membrane of the chloroplast envelope.  相似文献   

10.
Centrifugation of isolated myelin on discontinuous sucrose gradients resulted in a separation into three bands and a pellet. The three bands were morphologically identical to myelin, whereas the pellet consisted primarily of vesicular membranes. These four fractions differed from one another in their lipid-to-protein ratios and in molar ratios of cholesterol:phospholipid:galactolipid. All of the fractions contained proteins typical of myelin, although the proportions of the proteins varied, with the pellet being the lowest in basic protein and proteolipid protein. High activity of 2′,3′-cyclic nucleotidase and low activity of cerebroside sulphotransferase further distinguished these fractions from the microsomal fraction. Distribution of radioactive sulphatide in the subfractions at 15 min after intracranial injection of radioactive sulphate indicated that newly-labelled sulphatide first appeared in the lipid-poor fractions, followed by the lipid-rich fractions; results of pulse-chase experiments also suggested this relationship. Several days or weeks after the injection of radioactive sulphate, most of the radioactive sulphatide was in the lipid-rich fractions.  相似文献   

11.
The histopathological response and cell culture characteristics of liver cells from the R16 (grc ) strain of rats, which carries an MHC-linked deletion, were examined one week after a single intraperitoneal injection of 200 mg/ kg body weight diethylnitrosamine (DEN) and were compared with the response of liver cells from wild type (grc+) rats. The DEN exposure induced hydropicl vacuolar changes in the parenchymal cells and a limited proliferation of oval cells in the periportal areas of the livers of both grc+ and grc rats. Primary culture of collagenase-digested livers consisted of parenchymal, bile ductular and oval-related cells as determined by cell-specific immunohistochemistry. Subpassaged cells from grc+ rats exhibited oval cell ultrastructural morphology, inducible histochemical staining for gammaglutamyl transpeptidase (GGT), and DEN-associated onset of anchorage-independent growth. Primary cultures of liver cells from R16 rats consistently failed to form cell strains upon subpassage.Abbreviations DEN diethylnitrosamine - grc growth and reproduction complex - GGT gamma-glutamyl transpeptidase - MHC major histocompatibility complex  相似文献   

12.
An enzyme which will deacylate sulphoquinovosyl diacylglycerol (SQDG) has been partially purified from the leaves of runner bean (Phaseolus multiflorus). No monoacyl intermediate was observed and the acyl hydrolase was more active towards unsaturated molecular species of SQDG than towards saturated species. The major peak of activity of SQDG acyl hydrolase, separated on both DEAE-cellulose and Sephadex columns, also contained galactolipid acyl hydrolase activity. The distribution of these activities together with substrate competition and inhibitor experiments indicated that at least part of the SQDG acyl hydrolase activity was due to an enzyme that also hydrolysed galactolipids.  相似文献   

13.
The nuclear genes involved in chloroplast development and chlorophyll biosynthesis must be investigated to understand their functions in plant growth and development. In this study, we isolated and identified a unique leaf-color mutant of rice with a green-yellow phenotype before the four-leaf stage and named the mutation green-revertible chlorina 1 (grc1). The mutants had significantly lower plant height, number of tillers, and panicle length and headed significantly earlier than the wild type. The levels of chlorophylls, carotenoids, and chlorophyll precursors were also lower. The mutation in grc1 affected chloroplast ultrastructure, particularly thylakoid development. Genetic analysis indicated that the green-yellow phenotype was controlled by a single recessive gene. We mapped the grc1 gene to a 32.4-kb region on the long arm of chromosome 6. Through map-based cloning, we identified a 45-bp insertion in the genomic region of LOC_Os06g40080, which encoded a heme oxygenase. Expression of LOC_Os06g40080 was significantly down-regulated in the grc1 mutant. Subcellular localization showed that this heme oxygenase was localized in the chloroplast. In summary, we isolated and identified the gene for grc1, which plays an important role in chlorophyll biosynthesis and chloroplast development in rice.  相似文献   

14.
In Drosophila melanogaster aldehyde oxidase occurs in at least two forms that can be separated electrophoretically. The mutant allele lao (low aldehyde oxidase activity) causes a deficiency of the major form of this enzyme. Immunoelectrophoretic analyses suggest that lao homozygotes produce aldehyde oxidase cross-reacting-material in nearly wild-type levels. Although aldehyde oxidase from the mutant stock is heat labile. properties such as Km and pH optima are not different from the normal enzyme.  相似文献   

15.
Galactolipids such as monogalactosyldiacylglycerol and digalactosyldiacylglycerol are essential lipids for the proper functioning of photosynthetic membranes. However, the function of galactolipids in flowers is unknown. Previously, we reported that pistils have higher galactolipid-producing activity than leaves. The present study investigated galactolipid biosynthesis in pistils in more detail using Petunia hybrida and Lilium longiflorum. The results showed that digalactosyldiacylglycerol levels increased during flower development. In addition, the galactose incorporation activity into galactolipids was induced, suggesting that the pathway for the production of digalactosyldiacylglycerol was stimulated. Interestingly, a significant increase in galactolipids was also observed in elongated pollen tubes. Therefore, pistils are the main site of galactolipid biosynthesis and whose galactolipid biosynthesis activity is induced during flower development, and this induction includes considerable galactolipid biosynthesis in pollen tubes.  相似文献   

16.
17.
Influence of thyroid on formation of myelin lipids   总被引:7,自引:4,他引:3  
—The formation of lipids found primarily in the myelin sheath was investigated in rats made hypothyroid, at birth. A marked reduction in cerebroside, sulphatide, and cholesterol of brains was found in 18-day-old hypothyroid animals. These lipids were also reduced, although to a lesser degree, in 30-day-old ex-hypothyroid animals allowed to return to the euthyroid state at age 18 days. The onset of formation of sulphatide in vivo was delayed in the hypothyroid animals. Sulphatide formation reached a peak at a later time and was greatly reduced in comparison to control animals. The activity in vitro of galactolipid sulphotransferase, which forms sulphatide from cerebroside and PAPS, was reduced only when exogenous PAPS was not added to the assay medium. This finding suggests a defect in the formation of PAPS from ATP and sulphate in the hypothyroid brain. In addition, T3 (tri-iodothyronine) had a stimulatory effect in vivo of formation brain sulphatide when administered to rats during the first 5 days of life.  相似文献   

18.
Postnatal development of hepatic UDP-glucuronosyltransferase and sulphotransferase activities towards androsterone and 4-nitrophenol as well as cytochrome P-450 contents was studied in male and female Wistar rats. The rats with high and low UDP-glucuronosyltransferase activity towards androsterone were classified by the genotype of the parent animals. UDP-glucuronosyltransferase activity towards androsterone began rapidly to enhance after 30 days of age in the high-activity group, whereas the transferase activity remained low throughout in the low-activity group. Such a striking difference was not observed in UDP-glucuronosyltransferase activity towards 4-nitrophenol, sulphotransferase activity towards androsterone and 4-nitrophenol, and cytochrome P-450 contents. Sex-based difference in the sulphotransferase activity was marked after 30 days of age. Sulphotransferase activity towards androsterone was much higher in adult females than in adult males, whereas higher sulphation activity towards 4-nitrophenol was found in adult males. The results also indicate that the low level of the UDP-glucuronosyltransferase activity did not lead to compensatory stimulation of the sulphotransferase activity.  相似文献   

19.
Pectins are major components of primary cell wall that play a crucial role in plant development. After biosynthesis, pectins are secreted in the cell wall by Golgi-derived vesicles under a highly methylesterified form and are de-methylesterified by pectin methylesterases (PME). It is hypothesized that PME might be regulated by pectin methylesterase inhibitor (PMEI). In this paper, we show by isoelectric focalisation and subsequent zymogram that kiwi PMEI was able to inhibit Arabidopsis PME activity by forming a complex. The complexes were stable under a wide range of ionic strength and pH. Moreover, PMEI might be able to form a complex with basic PMEs including three PMEs strongly expressed in root and four PMEs expressed in pollen grains. Finally, exogenous treatment with kiwi PMEI was able to reduce the activity of cell wall resident PMEs with persistent effects such as an increase of the root growth and a dramatic effect on pollen tube stability.  相似文献   

20.
Because the envelope phosphatidate phosphatase plays a pivotal role in chloroplast glycerolipid metabolism, we have analyzed whether diacylglycerol could be a regulatory factor of the enzyme. Using isolated envelope membranes in which the level of diacylglycerol was modified by thermolysin treatment of intact chloroplasts to destroy the galactolipid:galactolipid galactosyltransferase, we have demonstrated that phosphatidate phosphatase activity was reduced when the membrane was enriched in diacylglycerol. All 1,2-diacylglycerol molecular species assayed were demonstrated to inhibit the enzyme to about the same extent. Kinetic studies with envelope from thermolysin-treated chloroplasts were performed in the absence and presence of diacylglycerol, and diacylglycerol was shown to be a powerful competitive inhibitor of the reaction. Finally, using isolated intact spinach chloroplasts, we have demonstrated that in situ phosphatidate phosphatase activity can be modulated by the level of diacylglycerol present in the membrane. The relevance of phosphatidate phosphatase inhibition by diacylglycerol in the regulation of chloroplast glycerolipid biosynthesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号