首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The nitrogenase Fe-protein is the specific ATP-activated electron donor to the active site-containing nitrogenase MoFe-protein. It has been previously demonstrated that different VO(2+)-nucleotide coordination environments exist for the Fe-protein that depend on pH and are distinguishable by EPR spectroscopy. After having studied the nitrogenase 31P and 23Na superhyperfine structure for this system by electron nuclear double resonance (ENDOR) spectroscopy (Petersen et al. 2008 in J Biol Inorg Chem. doi:10.1007/s00775-008-0360-0), we here report on the 1H-interactions with the nucleotide-bound metal center after substitution of the natural diamagnetic metal Mg2+ with paramagnetic oxo-vanadium(IV). ENDOR spectra show a number of resonances arising from interactions of the VO2+ ion with protons. In the presence of reduced Fe-protein and VO2+ ADP, at least three sets of nonexchangeable protons are detected. At low pH the superhyperfine couplings of most of these are consistent with proton interactions originating from the nucleotide. There is no indication of 1H-resonances that exchange in D2O at neutral pH and could be assigned to inner-sphere hydroxyl coordination. Exchangeable hydroxyl protons in the inner coordination sphere with reduced Fe-protein are only found in the low pH form; based on their hyperfine tensor components these have been assigned to an axially coordinated hydroxyl water molecule. The pH-dependent alterations of the proton couplings that exchange in D2O suggest that they are partially caused by a rearrangement in the local hydroxyl coordination environment of the metal center. These rearrangements especially affect the apical metal position, where an axially coordinated water present at low pH is absent at neutral pH. Oxidation of the Fe-protein induced substantial changes in the electron-nucleus interactions. This indicates that the oxidation state of the iron-sulfur cluster has an important effect on the metal coordination environment at the nucleotide binding site of the Fe-protein. The distinct VO(2+)-nucleotide coordination structures with ADP and ATP and the redox state of the [4Fe-4S] cluster imply that VO2+ has a critical influence on the switch regions of the regulatory protein, and, taken together, this provides a plausible explanation for the inhibitory action of VO2+.  相似文献   

3.
57Fe, 33S, and 14N electron nuclear double resonance (ENDOR) studies have been performed to characterize the [4Fe-4S]+ cluster at the active site of aconitase. Q-band 57Fe ENDOLR of isotopically enriched enzyme, both substrate free and in the enzyme-substrate complex, reveals four inequivalent iron sites. In agreement with M?ssbauer studies [Kent et al. (1985) J. Biol. Chem. 260, 6371-6881], one of the iron ions, Fea, which is easily removed by oxidation to yield the [3Fe-4S]+ cluster of inactive aconitase, shows a dramatic change in the presence of substrate. The remaining iron sites, Feb1,2,3, show minor changes when substrate is bound. Methods devised by us for analyzing and simulating ENDOR spectra of a randomly oriented paramagnet have been used to determine the principal values and orientation relative to the g tensor for the hyperfine tensors of three of the four inequivalent iron sites of the [4Fe-4S]+ cluster, Fea, Feb2, and Feb3, in the substrate-free enzyme and the enzyme-substrate complex. The full tensor for the fourth site, Feb1, could not be obtained because its signal is seen only over a limited range of the EPR envelope. 33S ENDOR data for the enzyme-substrate complex using enzyme reconstituted with 33S show that the four inorganic bridging sulfide ions of the [4Fe-4S]+ cube have isotropic hyperfine couplings of A(S) less than 12 MHz, and analysis indicates that they can be divided into two pairs, one with couplings of A(S1) approximately less than 1 MHz and the other with A(S2) approximately 6-12 MHz; the analysis further places these pairs within the cube relative to the iron sites. 33S data for substrate-free enzyme is qualitatively similar and can be completely simulated by two types of S2- ion, with A(S1) approximately 7.5 and A(S2) approximately 9 MHz; the full hyperfine tensors have been determined. The hyperfine values for the two enzyme forms correspond to surprisingly small unpaired spin density on S2-. 14N ENDOR at Q-band reveals a nitrogen signal that does not change upon substrate binding.  相似文献   

4.
Key features differentiating the coordination environment of the two irons in the mixed-valent (Fe(2+),Fe(3+)) diiron site of Desulfovibrio vulgaris rubrerythrin (Rbr(mv)) were determined by continuous wave (CW) and pulsed ENDOR spectroscopy at 35GHz. (14)N ENDOR evidence indicates that a nitrogen is bound only to the Fe(2+) ion of the mixed-valent site. Assuming that this nitrogen is from His131Ndelta, the same one that furnishes an iron ligand in the crystal structure of the diferric site, the ENDOR data allow us to specify the Fe(2+) and Fe(3+) positions within the molecular reference frame. In addition, the (1,2)H ENDOR on Rbr(mv) indicates the presence of a solvent-derived aqua/hydroxo ligand bound either terminally or in a bridging mode to Fe(3+) in the mixed-valent site. The relatively large g anisotropy of Rbr(mv) and weak antiferromagnetic coupling, J approximately -8 cm(-)(1) (in the 2JS(1)*S(2) formalism), between the irons is more consistent with a bridging than terminal hydroxo ligand. gamma-Irradiation was used to cryoreduce Rbr at 77 K, thereby producing a mixed-valent diiron site [(Rbr(ox))(mv)] that retains the structure of the diferric site. The EPR spectrum of (Rbr(ox))(mv) was nearly identical to that of the as-isolated or chemically reduced samples. This near identity implies that the structure of the mixed-valent Rbr diiron site is essentially identical to that of the diferric site, except for protonation of the oxo bridge, which apparently occurred via a proton jump from hydrogen-bonded solvent at 77 K. The EPR spectrum of (Rbr(ox))(mv) thus supports the (14)N ENDOR-assigned His131 ligation to Fe(2+) and assignment of the solvent-derived ligand observed in the (1,2)H ENDOR to a hydroxo bridge between the irons of the mixed-valent diiron site.  相似文献   

5.
Recently, we used 35 GHz pulsed 15N ENDOR spectroscopy to determine the position of the reactive guanidino nitrogen of substrate L-arginine relative to the high-spin ferriheme iron of holo-neuronal nitric oxide synthase (nNOS) [Tierney, D. L., et al. (1998) J. Am. Chem. Soc. 120, 2983-2984]. Analogous studies of the enzyme-bound reaction intermediate, NG-hydroxy-L-arginine (NOHA), singly labeled with 15N at the hydroxylated nitrogen (denoted NR), show that NR is held 3.8 A from the Fe, closer than the corresponding guanidino N of L-Arg (4.05 A). 1,2H ENDOR of NOHA bound to holo-nNOS in H2O and D2O discloses the presence of a single resolved exchangeable proton (H1) 4.8 A from Fe and very near the heme normal. The ENDOR data indicate that NOHA does not bind as the resonance-stabilized cation in which the terminal nitrogens share a positive charge. ENDOR-determined structural constraints permit two alternate structural models for the interaction of NOHA with the high-spin heme iron. In one model, H1 is assigned to the O-H proton; in the other, it is the NR-H proton. However, the alternatives differ in the placement of the N-O bond relative to the heme iron. Thus, a combination of the ENDOR data with appropriate diffraction studies can achieve a definitive determination of the protonation state of NR and thus of the tautomeric form that is present in the enzyme-NOHA complex. The mechanistic implications of this result are further discussed.  相似文献   

6.
M J Yablonski  E C Theil 《Biochemistry》1992,31(40):9680-9684
Ferritin is a large protein, highly conserved among higher eukaryotes, which reversibly stores iron as a mineral of hydrated ferric oxide. Twenty-four polypeptides assemble to form a hollow coat with the mineral inside. Multiple steps occur in iron core formation. First, Fe2+ enters the protein. Then, several alternate paths may be followed which include oxidation at site(s) on the protein, oxidation on the core surface, and mineralization. Sequence variations occur among ferritin subunits which are classified as H or L; Fe2+ oxidation at sites on the protein appears to be H-subunit-specific or protein-specific. Other steps of ferritin core formation are likely to involve conserved sites in ferritins. Since incorporation of Fe2+ into the protein must precede any of the other steps in core formation, it may involve sites conserved among the various ferritin proteins. In this study, accessibility of Fe2+ to 1,10-phenanthroline, previously shown to be inaccessible to Fe2+ inside ferritin, was used to measure Fe2+ incorporation in two different ferritins under various conditions. Horse spleen ferritin (L/H = 10-20:1) and sheep spleen ferritin (L/H = 1:1.6) were compared. The results showed that iron incorporation measured as inaccessibility of Fe2+ to 1,10-phenanthroline increased with pH. The effect was the same for both proteins, indicating that a step in iron core formation common among ferritins was being measured. Conserved sites previously proposed for different steps in ferritin core formation are at the interfaces of pairs and trios of subunits. Dinitrophenol cross-links, which modify pairs of subunits and affect iron oxidation, had no effect on Fe2+ incorporation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We previously reported the vanadyl hyperfine couplings of VO(2+)-ATP and VO(2+)-ADP complexes in the presence of the nitrogenase Fe protein from Klebsiella pneumoniae (Petersen et al. in Biochemistry 41:13253-13263, 2002). It was demonstrated that different VO(2+)-nucleotide coordination environments coexist and are distinguishable by electron paramagnetic resonance (EPR) spectroscopy. Here orientation-selective continuous-wave electron-nuclear double resonance (ENDOR) spectra have been investigated especially in the low-radio-frequency range in order to identify superhyperfine interactions with nuclei other than protons. Some of these resonances have been attributed to the presence of a strong interaction with a 31P nucleus although no resolvable superhyperfine structure due to 31P or other nuclei was detected in the EPR spectra. The superhyperfine coupling component is determined to be about 25 MHz. Such a 31P coupling is consistent with an interaction of the metal with phosphorus from a directly, equatorially coordinated nucleotide phosphate group(s). Additionally, novel more prominent 31P ENDOR signals are detected in the low-frequency region. Some of these correspond to a relatively weak 31P coupling. This coupling is present with ATP for all pH forms but is absent with ADP. The ENDOR resonances of these weakly coupled 31P are likely to originate from an interaction of the metal with a nucleotide phosphate group of the nucleoside triphosphate and are attributed to a phosphorus with axial characteristics. Another set of resonances, split about the nuclear Zeeman frequency of 23Na, was detected, suggesting that a monovalent Na+ ion is closely associated with the divalent metal-nucleotide binding site. Na+ replacement by K+ unambiguously confirmed that ENDORs at radio frequencies between 3.0 and 4.5 MHz arise from an interaction with Na+ ions. In contrast to the low-frequency 31P signal, these resonances are present in spectra with both ADP and ATP, and for both low- and neutral-pH forms, although slight differences are detected, showing that these are sensitive to the nucleotide and pH.  相似文献   

8.
D C Harris 《Biochemistry》1977,16(3):560-564
Transferrin, the serum serum iron-transport protein which can bind two metal ions at physiologic pH, binds just one Fe3+, VO2+, or Cr3+ ion at pH 6.0. Fe3+ and VO2+ appear to be bound at the same site, designated A, based on electron paramagnetic resonance (EPR) spectra of VO2+-transferrin and (Fe3+)1(VO2+)1-transferrin. The EPR spectra of (Cr3+)1(VO2+)1-transferrin and of (Cr3+), (FE3+)1-transferrin indicate that that Cr3+ is bound to site B at pH 6.0. Transferrin was labeled at site A with 59Fe at pH 6.0 and at site B with 55Fe at pH 7.5. When the pH of the resulting preparation was lowered to 6.3 and the dissociated iron was separated by gel filtration, about ten times as much 55Fe as 59Fe was lost. The same EPR and isotopic-labeling experiments showed that Fe3+ added to transferrin at pH 7.5 binds to site A with about 90% selectivity.  相似文献   

9.
During its metabolism, vanadium is known to become associated with the iron storage protein, ferritin. To elucidate probable vanadium binding sites on the protein, VO2+ binding to mammalian ferritins was studied using site-directed mutagenesis and EPR spectroscopy. VO2+-apoferritin EPR spectra of human H-chain (100% H), L-chain (100% L), horse spleen (84% L, 16% H) and sheep spleen (45% L, 55% H) ferritins revealed the presence of alpha and beta VO2+ species in all the proteins, implying that the ligands for these species are conserved between the H- and L-chains. The alpha species is less stable than the beta species and decreases with increasing pH, demonstrating that the two species are not pH-related, a result contrary to earlier proposals. EPR spectra of site-directed HuHF variants of several residues conserved in H- and L-chain ferritins (Asp-131, Glu-134, His-118 and His-128) suggest that His-118 near the outer opening of the three-fold channel is probably a ligand for VO2+ and is responsible for the beta signals in the EPR spectrum. The data indicate that VO2+ does not bind to the Asp-131 and Glu-134 residues within the three-fold channels nor does it bind at the ferroxidase site residues Glu-62 or His-65 or at the putative nucleation site residues Glu-61,64,67. While the ferroxidase site is not a site for VO2+ binding, mutation of residues Glu-62 and His-65 of this site to Ala affects VO2+ binding at His-118, located some 17 A away. Thus, VO2+ spin probe studies provide a window on structural changes in ferritin not seen in most previous work and indicate that long-range effects caused by point mutations must be carefully considered when drawing conclusions from mutagenesis studies of the protein.  相似文献   

10.
Fe2+ binding to both apo- and holo- bacterial ferritin from Azotobacter vinelandii (AVBF) was measured as a function of pH under carefully controlled anaerobic conditions. Fe2+ binding to apo-AVBF is strongly pH dependent with 25 Fe2+ ions/apo-AVBF binding tightly at pH 5.5 and over 150 Fe2+/apo-AVBF at pH 9.0. Holo-AVBF gave a similar pH-dependent binding profile with over 400 Fe2+/AVBF binding at pH of 9.0. Proton release per Fe2+ bound to either AVBF protein increases with increasing pH until a total of about two protons are released at pH 9.0. These binding results are both qualitatively and quantitatively different from corresponding measurements (Jacobs et al., 1989) on apo- and holo- mammalian ferritin (MF) where less Fe2+ binds in both cases. The high level of Fe2+ binding to holo-AVBF relative to that of mammalian ferritin is a consequence of the higher phosphate content in the core of AVBF. Reduction of AVBF by either dithionite or methyl viologen in the absence of chelating agents demonstrated that phosphate, but not Fe2+, is released from the AVBF core in amounts commensurate with the degree of iron reduction, although even at 100% reduction considerable phosphate remains associated with the reduced mineral core. Fe2+ binding to holo-AVBF made deficient in phosphate was lower than that of native AVBF, while the addition of phosphate to native holo-AVBF increased the Fe2+ binding capacity. These results clearly support the role of phosphate as the site of interaction of Fe2+ with the AVBF mineral core.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
 The apo protein of imidazole glycerol phosphate dehydratase (IGPD) from Saccharomyces cerevisiae combines stoichiometrically with certain specific divalent metal cations to assemble the catalytically active form comprising 24 protein subunits and tightly bound metal. VO2+ ions react similarly but, uniquely, result in a metallo-protein (VO-IGPD) with neither catalytic activity nor the ability to bind to the reaction intermediate analogue, 2-hydroxy-3-(1,2,4-triazol-1-yl) propylphosphonate. Since VO2+ apparently assembles the quaternary structure correctly, it is used in the present study as a spin probe to investigate the metal centre coordination environment by electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopy. At neutral pH, the EPR spectrum of VO-IGPD reveals at least three distinct VO2+ sub-spectra with one predominant at low pH. The spin Hamiltonian parameters for some of the sub-spectra are consistent with 51V having nitrogen in the inner-sphere equatorial coordination environment from, most probably, multiple coordinating histidines. Further evidence for inner-sphere nitrogen ligands is obtained from ENDOR spectroscopy. The spectra of the low rf region show signals from interactions with 14N which are consistent with couplings to the imino nitrogen of coordinated histidine residues. In addition a number of proton ENDOR line pairs are resolved. Of the few that disappear upon exchange of the protein into D2O, one most likely originates from the exchangeable proton of the N-H group of a coordinated histidine imidazole. 1H-ENDOR line pairs from non-exchangeable protons with splittings of approximately 3 MHz can be attributed to imidazole carbon protons. Thus, most of the couplings observed by ENDOR are consistent with being from the imidazole heterocycle of one or more histidine ligands. Received: 27 June 1996 / Accepted: 14 March 1997  相似文献   

12.
Imidazole glycerol phosphate dehydratase (IGPD) catalyses the dehydration of imidazole glycerol phosphate to imidazole acetol phosphate, an important late step in the biosynthesis of histidine. IGPD, isolated as a low molecular weight and inactive apo-form, assembles with specific divalent metal cations to form a catalytically active high molecular weight metalloenzyme. Oxo-vanadium ions also assemble the protein into, apparently, the same high molecular weight form but, uniquely, yield a protein without catalytic activity. The VO2+ derivative of IGPD has been investigated by electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopy. The spin Hamiltonian parameters indicate the presence of multiple 14N nuclei in the inner coordination sphere of VO2+ which is corroborated by ENDOR and ESEEM spectra showing resonances attributable to interactions with 14N nuclei. The isotropic superhyperfine coupling component of about 7 MHz determined by ENDOR is consistent with a nitrogen of coordinated histidine imidazole(s). The ESEEM Fourier-transform spectra further support the notion that the VO2+ substituted enzyme contains inner-sphere nitrogen ligands. The isotropic and anisotropic 14N superhyperfine coupling components are similar to those reported for other equatorially coordinated enzymatic histidine imidazole systems. ESEEM resonances from axial 14N ligands are discussed.  相似文献   

13.
Iron oxidation in the bacterial ferritin EcFtnA from Escherichia coli shows marked differences from its homologue human H-chain ferritin (HuHF). While the amino acid residues that constitute the dinuclear center in these proteins are highly conserved, EcFtnA has a third iron-binding site (C site) in close proximity to the dinuclear center that is seemingly responsible for these differences. Here, we describe the first thermodynamic study of Fe2+ binding to EcFtnA and its variants to determine the location of the primary ferrous ion-binding sites on the protein and to better understand the role of the third C site in iron binding. Isothermal titration calorimetric analyses of the wild-type protein reveal the presence of two main classes of binding sites in the pH range of 6.5-7.5, ascribed to Fe2+ binding, first at the A and then the B sites. Site-directed mutagenesis of ligands in the A, B, or C sites affects the apparent Fe2+-binding stoichiometries at the unaltered sites. The data imply some degree of inter- and intrasubunit negative cooperative interaction between sites. Unlike HuHF where only the A site initially binds Fe2+, both A and B sites in EcFtnA bind Fe2+, implying a role for the C site in influencing the binding of Fe2+ at the B site of the di-iron center of EcFtnA. The ITC equations describing a binding model for three classes of independent binding sites are reported here for the first time.  相似文献   

14.
Hyperfine interactions (1H and 14N) with the paramagnetic Cu(II)-site obtained from frozen solutions of human and bovine erythrocyte superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) as well as from their derivatives produced by anion binding (N3-, CN-) and by depletion of the Zn(II) site were studied using electron nuclear double resonance (ENDOR) spectroscopy at about 15 K. Both interactions were found to be identical in human and bovine erythrocyte superoxide dismutase. In all compounds, an anisotropic, exchangeable 1H interaction with a nearly constant coupling value (approximately 3 MHz along g perpendicular ) was observed which is due to either histidine NH- or water protons. Other proton interactions were tentatively assigned to H beta 1 of His-44, H delta 2 of His-46 and to H beta 2 of His-44. Depletion of the Zn(II) site did not alter appreciably the pattern of the proton interactions. The 14N couplings of the native specimen indicated equivalent coordination, whereas Zn(II) depletion and CN- addition were found to produce either some or drastic inequivalences, respectively. For N3- addition to either the native or the Zn(II)-depleted sample only minor effects on the respective 14N coupling pattern were observed.  相似文献   

15.
The techniques of EPR and electron nuclear double resonance (ENDOR) were used to probe structure and electronic distribution at the nitric oxide (NO)-ligated heme alpha 3 in the nitrosylferrocytochrome alpha 3 moiety of fully reduced cytochrome c oxidase. Hyperfine and quadrupole couplings to NO (in both 15NO and 14NO forms), to histidine nitrogens, and to protons near the heme site were obtained. Parallel studies were also performed on NO-ligated myoglobin and model NO-heme-imidazole systems. The major findings and interpretations on nitrosylferrocytochrome alpha 3 were: 1) compared to other NO-heme-imidazole systems, the nitrosylferrocytochrome alpha3 gave better resolution of EPR and ENDOR signals; 2) at the maximal g value (gx = 2.09), particularly well resolved NO nitrogen hyperfine and quadrupole couplings and mesoproton hyperfine couplings were seen. These hyperfine and quadrupole couplings gave information on the electronic distribution on the NO, on the orientation of the g tensor with respect to the heme, and possibly on the orientation of the FeNO plane; 3) a combination of experimental EPR-ENDOR results and EPR spectral simulations evidenced a rotation of the NO hyperfine tensor with respect to the electronic g tensor; this implied a bent Fe-NO bond; 4) ENDOR showed a unique proton not seen in the other NO heme systems studied. The magnitude of this proton's hyperfine coupling was consistent with this proton being part of a nearby protein side chain that perturbs an axial ligand like NO or O2.  相似文献   

16.
Protein ferroxidase site(s), which catalyze the reaction between ferrous ion and dioxygen, have long been thought to play a role in core formation in ferritin; however, the mechanism of the reaction has never been studied in detail. In the present work, the enzymatic activity of ferritin was examined using oximetry, the net Fe2+ oxidation reaction being as follows. [formula: see text] The reaction exhibits saturation kinetics with respect to both Fe2+ and O2 (apparent Michaelis constants: Km,Fe = 0.35 +/- 0.01 mM and Km,O2 = 0.14 +/- 0.03 mM). The enzyme has a turnover number kcat = 80 +/- 3 min-1 at 20 degrees C with maximal activity at pH 7. The kinetics are discussed in terms of two mechanisms, one involving monomeric and the other dimeric iron protein complexes. In both instances Fe(II) oxidation occurs in 1-electron steps. Zinc(II) is a competitive inhibitor of iron(II) oxidation at Zn2+/apoprotein ratios > or = 6 (inhibitor constant KI,Zn = 0.067 +/- 0.011 mM) but appears to be a noncompetitive inhibitor at lower ratios (< or = 2), indicating the presence of more than one type of zinc binding site on the protein. At increments of 50 Fe2+/protein or less, all of the iron is oxidized via the protein ferroxidase site(s), independent of the amount of core already present. However, when larger increments are employed, some iron oxidation appears to occur on the surface of the mineral core. The results of these studies emphasize the role of the protein shell in all phases of core growth and confirm the presence of a functionally important catalytic site in ferritin in addition to other binding sites on the protein for iron.  相似文献   

17.
Q-Band ENDOR studies on carbon monoxide dehydrogenase (CODH) from the acetogenic bacterium Clostridium thermoaceticum provided unambiguous evidence that the reaction of CO with CODH produces a novel metal center that includes at least one nickel, at least three iron sites, and the carbon of one CO. The 57Fe hyperfine couplings determined by ENDOR are similar to the values used in simulation of the M?ssbauer spectra [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888]. EPR simulation using these AFe values is equally good for a 4Fe or a 3Fe center. The 13C ENDOR data are consistent with the binding of a carbon atom to either the Ni or the Fe component of the spin-coupled cluster. The 13C hyperfine couplings are similar to those determined earlier for the C0-bound form of the H cluster of the Clostridium pasteurianum hydrogenase, proposed to be the active site of hydrogen activation [Telser et al. (1987) J. Biol. Chem. 262, 6589-5694]. The 61 Ni ENDOR data are the first nickel ENDOR recorded for an enzyme. The EPR simulation using the ENDOR-derived hyperfine values for 61Ni is consistent with a single nickel site in the Ni-Fe-C complex. On the basis of our results and the M?ssbauer data [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888], we propose the stoichiometry of the components of the Ni-Fe-C complex to be Ni1Fe3-4S greater than or equal to 4C1, with four acid-labile sulfides.  相似文献   

18.
We have performed ENDOR spectroscopy at microwave frequencies of 9 and 35 GHz at 2 K on the reduced Rieske-type [2Fe-2S] cluster of phthalate dioxygenase (PDO) from Pseudomonas cepacia. Four samples have been examined: (1) 14N (natural abundance); (2) uniformly 15N labeled; (3) [15N]histidine in a 14N background; (4) [14N]histidine in a 15N background. These studies establish unambiguously that two of the ligands to the Rieske [2Fe-2S] center are nitrogens from histidine residues. This contrasts with classical ferredoxin-type [2Fe-2S] centers in which all ligation is by sulfur of cysteine residues. Analysis of the polycrystalline ENDOR patterns has permitted us to determine for each nitrogen ligand the principal values of the hyperfine tensor and its orientation with respect to the g tensor, as well as the 14N quadrupole coupling tensor. The combination of these results with earlier M?ssbauer and resonance Raman studies supports a model for the reduced cluster with both histidyl ligands bound to the ferrous ion of the spin-coupled [Fe2+ (S = 2), Fe3+ (S = 5/2)] pair. The analyses of 15N hyperfine and 14N quadrupole coupling tensors indicate that the geometry of ligation at Fe2+ is approximately tetrahedral, with the (Fe)2(N)2 plane corresponding to the g1-g3 plane, and that the planes of the histidyl imidazoles lie near that plane, although they could not both lie in the plane. The bonding parameters of the coordinated nitrogens are fully consistent with those of an spn hybrid on a histidyl nitrogen coordinated to Fe. Differences in 14N ENDOR line width provide evidence for different mobilities of the two imidazoles when the protein is in fluid solution. We conclude that the structure deduced here for the PDO cluster is generally applicable to the full class of Rieske-type centers.  相似文献   

19.
Electron nuclear double resonance (ENDOR) spectroscopy is used to probe the coordination of the mixed valence (Fe(II).Fe(III)) diiron cluster of the methane monooxygenase hydroxylase component (MMOH-) isolated from Methylosinus trichosporium OB3b. ENDOR resonances are observed along the principal axis directions g1 = 1.94 and g3 = 1.76 from at least nine different protons and two different nitrogens. The nitrogens are strongly coupled and appear to be directly coordinated to the cluster irons. The ratio of their superhyperfine coupling constants is roughly 4:7, which equals the ratio of the spin expectation values of the Fe(II) and Fe(III) in the ground state and suggests that at least one nitrogen is coordinated to each iron of the mixed valence cluster. Moreover, the superhyperfine and quadrupole coupling constants assigned to the Fe(III) site (AN = 13.6 MHz, PN = 0.7 MHz) are comparable with those observed for semimethemerythrin sulfide (AN = 12.1 MHz, PN = 0.7 MHz), for which the nitrogen ligands are histidines. At least three of the coupled protons exchange slowly when MMOH- is incubated in D2O, and 2H ENDOR resonances are subsequently observed. These observations are also consistent with histidine ligation of the iron cluster. On addition of the inhibitor dimethyl sulfoxide (Me2SO) to MMOH- the EPR spectrum sharpens and shifts dramatically. Only one set of 14N ENDOR resonances is observed with frequencies equal to those assigned to the Fe(III)-histidine resonances of uncomplexed MMOH- suggesting that the nitrogen coordination to the Fe(II) site is altered or possibly lost in the presence of Me2SO. 2H ENDOR resonances are observed in the presence of d6-Me2SO indicating that the inhibitor Me2SO binds near or possibly to the diiron cluster. In contrast, no 2H ENDOR resonances are observed from d4-methanol upon addition to MMOH-. Thus, the changes observed in the EPR spectrum of MMOH- upon addition of methanol may result from binding to a site away from the diiron cluster or from bulk solvent effects on the protein structure.  相似文献   

20.
Ferritins are nearly ubiquitous iron storage proteins playing a fundamental role in iron metabolism. They are composed of 24 subunits forming a spherical protein shell encompassing a central iron storage cavity. The iron storage mechanism involves the initial binding and subsequent O2-dependent oxidation of two Fe2+ ions located at sites A and B within the highly conserved dinuclear "ferroxidase center" in individual subunits. Unlike animal ferritins and the heme-containing bacterioferritins, the Escherichia coli ferritin possesses an additional iron-binding site (site C) located on the inner surface of the protein shell close to the ferroxidase center. We report the structures of five E. coli ferritin variants and their Fe3+ and Zn2+ (a redox-stable alternative for Fe2+) derivatives. Single carboxyl ligand replacements in sites A, B, and C gave unique effects on metal binding, which explain the observed changes in Fe2+ oxidation rates. Binding of Fe2+ at both A and B sites is clearly essential for rapid Fe2+ oxidation, and the linking of FeB2+ to FeC2+ enables the oxidation of three Fe2+ ions. The transient binding of Fe2+ at one of three newly observed Zn2+ sites may allow the oxidation of four Fe2+ by one dioxygen molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号