首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Kikkawa M  Hirokawa N 《The EMBO journal》2006,25(18):4187-4194
Kinesin is an ATP-driven microtubule (MT)-based motor fundamental to organelle transport. Although a number of kinesin crystal structures have been solved, the structural evidence for coupling between the bound nucleotide and the conformation of kinesin is elusive. In addition, the structural basis of the MT-induced ATPase activity of kinesin is not clear because of the absence of the MT in the structure. Here, we report cryo-electron microscopy structures of the monomeric kinesin KIF1A-MT complex in two nucleotide states at about 10 A resolution, sufficient to reveal the secondary structure. These high-resolution maps visualized clear structural changes that suggest a mechanical pathway from the nucleotide to the neck linker via the motor core rotation. In addition, new nucleotide binding pocket conformations are observed that are different from X-ray crystallographic structures; it is closed in the 5'-adenylyl-imidodiphosphate state, but open in the ADP state. These results suggest a structural model of biased diffusion movement of monomeric kinesin motor.  相似文献   

2.
Potassium (K+) ion channels switch between open and closed conformations. The nature of this important transition was revealed by comparing the X-ray crystal structures of the MthK channel from Methanobacterium thermoautotrophicum, obtained in its open conformation, and the KcsA channel from Streptomyces lividans, obtained in its closed conformation. We analyzed the dynamic characteristics and energetics of these homotetrameric structures in order to study the role of the intersubunit cooperativity in this transition. For this, elastic models and in silico alanine-scanning mutagenesis were used, respectively. Reassuringly, the calculations manifested motion from the open (closed) towards the closed (open) conformation. The calculations also revealed a network of dynamically and energetically coupled residues. Interestingly, the network suggests coupling between the selectivity filter and the gate, which are located at the two ends of the channel pore. Coupling between these two regions was not observed in calculations that were conducted with the monomer, which emphasizes the importance of the intersubunit interactions within the tetrameric structure for the cooperative gating behavior of the channel.  相似文献   

3.
Genetic analysis has suggested that the product of the Bacillus subtilis ysxC gene is essential for survival of the microorganism and hence may represent a target for the development of a novel anti-infective agent. B.subtilis YsxC is a member of the translation factor related class of GTPases and its crystal structure has been determined in an apo form and in complex with GDP and GMPPNP/Mg2+. Analysis of these structures has allowed us to examine the conformational changes that occur during the process of nucleotide binding and GTP hydrolysis. These structural changes particularly affect parts of the switch I and switch II region of YsxC, which become ordered and disordered, respectively in the "closed" or "on" GTP-bound state and disordered and ordered, respectively, in the "open" or "off" GDP-bound conformation. Finally, the binding of the magnesium cation results in subtle shifts of residues in the G3 region, at the start of switch II, which serve to optimize the interaction with a key aspartic acid residue. The structural flexibility observed in YsxC is likely to contribute to the role of the protein, possibly allowing transduction of an essential intracellular signal, which may be mediated via interactions with a conserved patch of surface-exposed, basic residues that lies adjacent to the GTP-binding site.  相似文献   

4.
BACKGROUND: Calmodulin is a ubiquitous Ca(2+)-activated regulator of cellular processes in eukaryotes. The structures of the Ca(2+)-free (apo) and Ca(2+)-loaded states of calmodulin have revealed that Ca(2+) binding is associated with a transition in each of the two domains from a closed to an open conformation that is central to target recognition. However, little is known about the dynamics of this conformational switch. RESULTS: The dynamics of the transition between closed and open conformations in the Ca(2+)-loaded state of the E140Q mutant of the calmodulin C-terminal domain were characterized under equilibrium conditions. The exchange time constants (tau(ex)) measured for 42 residues range from 13 to 46 micros, with a mean of 21 +/- 3 micros. The results suggest that tau(ex) varies significantly between different groups of residues and that residues with similar values exhibit spatial proximity in the structures of apo and/or Ca(2+)-saturated wild-type calmodulin. Using data for one of these groups, we obtained an open population of p(o) = 0.50 +/- 0.17 and a closed --> open rate constant of k(o) = x 10(4) s(-1). CONCLUSIONS: The conformational exchange dynamics appear to involve locally collective processes that depend on the structural topology. Comparisons with previous results indicate that similar processes occur in the wild-type protein. The measured rates match the estimated Ca(2+) off rate, suggesting that Ca(2+) release may be gated by the conformational dynamics. Structural interpretation of estimated chemical shifts suggests a mechanism for ion release.  相似文献   

5.
Previous studies have suggested that the Ca2+-saturated E140Q mutant of the C-terminal domain of calmodulin exhibits equilibrium exchange between "open" and "closed" conformations similar to those of the Ca2+-free and Ca2+-saturated states of wild-type calmodulin. The backbone dynamics of this mutant were studied using15N spin relaxation experiments at three different temperatures. Measurements at each temperature of the15N rate constants for longitudinal and transverse auto-relaxation, longitudinal and transverse cross-correlation relaxation, and the1H-15N cross-relaxation afforded unequivocal identification of conformational exchange processes on microsecond to millisecond time-scales, and characterization of fast fluctuations on picosecond to nanosecond time-scales using model-free approaches. The results show that essentially all residues of the protein are involved in conformational exchange. Generalized order parameters of the fast internal motions indicate that the conformational substates are well folded, and exclude the possibility that the exchange involves a significant population of unfolded or disordered species. The temperature dependence of the order parameters offers qualitative estimates of the contribution to the heat capacity from fast fluctuations of the protein backbone, revealing significant variation between the well-ordered secondary structure elements and the more flexible regions. The temperature dependence of the conformational exchange contributions to the transverse auto-relaxation rate constants directly demonstrates that the microscopic exchange rate constants are greater than 2.7x10(3)s-1at 291 K. The conformational exchange contributions correlate with the chemical shift differences between the Ca2+-free and Ca2+-saturated states of the wild-type protein, thereby substantiating that the conformational substates are similar to the open and closed states of wild-type calmodulin. Taking the wild-type chemical shifts to represent the conformational substates of the mutant and populations estimated previously, the microscopic exchange rate constants could be estimated as 2x10(4)to 3x10(4)s-1at 291 K for a subset of residues. The temperature depen dence of the exchange allows the characterization of apparent energy barriers of the conformational transition, with results suggesting a complex process that does not correspond to a single global transition between substates.  相似文献   

6.
7.
The effect of tetraethylammonium (TEA) bromide on the neurally and iontophoretically evoked endplate current (EPC) of frog sartorius muscle was investigated using voltage-clamp and noise analysis techniques, and its binding to the acetylcholine (ACh) receptor ionic channel complex was determined on the electric organ of Torpedo ocellata. TEA (250-500 microM) produced an initial enhancement followed by a slow decline in the amplitude of the endplate potential and EPC, but caused only depression in the amplitude of the miniature endplate potential and current. In normal ringer's solution, the EPC current-voltage relationship was approximately linear, and the decay phase varied exponentially with membrane potential. Upon addition of 50-100 microM TEA, the current-voltage relationship became markedly nonlinear at hyperpolarized command potentials, and with 250-2000 microM TEA, there was an initial linear segment, an intermediate nonlinear segment, and a region of negative conductance. The onset of nonlinearity was dose-dependent, undergoing a 50 mV shift for a 10-fold increase in TEA concentration. The EPC decay phase was shortened by TEA at hyperpolarized but not depolarized potentials, and remained a single expotential function of time at all concentrations and membrane potentials examined. These actions of TEA were found to be independent of the sequence of polarizations, the length of the conditioning pulse, and the level of the initial holding potential. TEA shifted the power spectrum of ACh noise to higher frequencies and produced a significant depression of single channel conductance. The shortening in the mean channel lifetime agreed closely with the decrease in the EPC decay time constant. At the concentrations tested, TEA did not alter the EPC reversal potential, nor the resting membrane potential, and had little effect on the action potential duration. TEA inhibited the binding of both [3H] ACh (Ki = 200 microM) and [3H]perhydrohistrionicotoxin (Ki = 280 microM) to receptor-rich membranes from the electric organ of Torpedo ocellata, and inhibited the carbamylcholine-activated 22Na+ efflux from these microsacs. It is suggested that TEA reacts with the nicotinic ACh-receptor as well as its ion channel; the voltage-dependent actions are associated with blockade of the ion channel. The results are compatible with a kinetic model in which TEA first binds to the closed conformation of the receptor-ionicchannel complex to produce a voltage-depdndent depression of endplate conductance and sudsequently to its open conformation, giving rise to the shortening in the EPC decay and mean channel lifetime.  相似文献   

8.
Three crystal structures, representing two distinct conformational states, of the mammalian catalytic subunit of cAMP-dependent protein kinase were solved using molecular replacement methods starting from the refined structure of the recombinant catalytic subunit ternary complex (Zheng, J., et al., 1993a, Biochemistry 32, 2154-2161). These structures correspond to the free apoenzyme, a binary complex with an iodinated inhibitor peptide, and a ternary complex with both ATP and the unmodified inhibitor peptide. The apoenzyme and the binary complex crystallized in an open conformation, whereas the ternary complex crystallized in a closed conformation similar to the ternary complex of the recombinant enzyme. The model of the binary complex, refined at 2.9 A resolution, shows the conformational changes associated with the open conformation. These can be described by a rotation of the small lobe and a displacement of the C-terminal 30 residues. This rotation of the small lobe alters the cleft interface in the active-site region surrounding the glycine-rich loop and Thr 197, a critical phosphorylation site. In addition to the conformational changes, the myristylation site, absent in the recombinant enzyme, was clearly defined in the binary complex. The myristic acid binds in a deep hydrophobic pocket formed by four segments of the protein that are widely dispersed in the linear sequence. The N-terminal 40 residues that lie outside the conserved catalytic core are anchored by the N-terminal myristylate plus an amphipathic helix that spans both lobes and is capped by Trp 30. Both posttranslational modifications, phosphorylation and myristylation, contribute directly to the stable structure of this enzyme.  相似文献   

9.
A variety of experiments suggest that membrane proteins are important targets of anesthetic molecules, and that ion channels interact differently with anesthetics in their open and closed conformations. The availability of an open and a closed structural model for the KirBac1.1 potassium channel has made it possible to perform a comparative analysis of the interactions of anesthetics with the same channel in its open and closed states. To this end, all-atom molecular dynamics simulations supplemented by normal mode analysis have been employed to probe the interactions of the inhalational anesthetic halothane with both an open and closed conformer of KirBac1.1 embedded in a lipid bilayer. Normal mode analysis on the closed and open channel, in the presence and absence of halothane, reveals that the anesthetic modulates the global as well as the local dynamics of both conformations differently. In the case of the open channel, the observed reduction of flexibility of residues in the inner helices suggests a functional modification action of anesthetics on ion channels. In this context, preferential quenching of the aromatic residue motion and modulation of global dynamics by halothane may be seen as steps toward potentiating or favoring open state conformations. These molecular dynamics simulations provide the first insights into possible specific interactions between anesthetic molecules and ion channels in different conformations.  相似文献   

10.
Indirect evidence suggests that the permeability of connexin 43 (Cx43) gap-junctional channels (connexons) to small organic molecules (M(r) < 1,000) is decreased by protein kinase C (PKC)-mediated phosphorylation of Ser-368. However, it is currently unknown whether this effect is produced directly by phosphorylation of this residue or whether cytoplasmic regulatory factors are required for the decrease in Cx43 gap-junctional channel permeability. Here we studied the effects of PKC-mediated phosphorylation on purified recombinant wild-type Cx43 and a PKC-unresponsive mutant (S368A). Our studies show that (a) PKC phosphorylates Ser-368, (b) the phosphorylation by PKC of purified and reconstituted connexons abolishes sucrose and Lucifer Yellow permeability, (c) the regulation of Cx43 by PKC is the direct result of phosphorylation of Ser-368 and does not involve intermediary regulatory factors, and (d) phosphorylation of Ser-368 produces a conformational change in purified Cx43 as demonstrated by changes in intrinsic Trp fluorescence and proteolytic digestion pattern. We conclude that phosphorylation of Ser-368 by PKC induces a conformational change of Cx43 that results in a decrease in connexon permeability.  相似文献   

11.
A R Walmsley  J G Shaw  D J Kelly 《Biochemistry》1992,31(45):11175-11181
A kinetic and thermodynamic analysis has been carried out on the conformational transitions of the periplasmic C4-dicarboxylate binding protein (DctP) from the photosynthetic bacterium Rhodobacter capsulatus. This protein is distinct from other periplasmic binding proteins characterized to date in that the transition between the putative closed-unliganded (BP1) and open-unliganded (BP2) conformations is slow compared to the rate of ligand binding [Walmsley, A. R., Shaw, J. G., & Kelly, D. J. (1992) J. Biol. Chem. 276, 8064-8072]. Using stopped-flow fluorescence techniques, we have probed the conformational dynamics of the closed to open transition of DctP in the absence and presence of ligand. Both the forward rate constant for the BP1 to BP2 interconversion (k1) and the fumarate dissociation rate constant (k-3) were found to increase in a biphasic manner between pH 5 and pH 11. The data were fitted to a two-pKa function which gave pKa values of 10.3 and 5.4 for the BP1 to BP2 interconversion and 8.9 and 4.5 for the closed-liganded (BP3L) to open-liganded (BP2L) transition. An increase in ionic strength at constant pH resulted in a hyperbolic increase in both k1 and k-3 to maximal rates that were similar in each case to the values obtained in pH variation experiments. Measurement of the temperature dependencies of k1 and k-3 also gave similar activation energies. Gibbs free energy, enthalpy, and entropy changes were determined for the open to closed transitions of DctP in both the presence and absence of ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Structural information about the prokaryotic KirBac3.1 inward rectifier family K(+) channel from Magnetospirillum magnetotacticum is reported. These results from two-dimensional electron cryomicroscopy (EM) shed light on the gating mechanism of members of the Kir channel family.  相似文献   

14.
Y N Lee  E Hamori 《Biopolymers》1974,13(1):77-96
Nonactin is a cyclic actinomycete metabolite which has been implicated as an ion carrier in the passive transport of potassium across certain biological membranes. In order to discover the conformations of the molecule which are involved in its biochemical function, computer calculations were initiated to derive the energetically favored conformations of the nonactin ring. By assuming that all the relevant three-dimensional conformations of nonactin have the same symmetry property as that suggested by the chemical structure of the molecule (S4) it was possible to generate a representative sample of all sterically allowed conformations of nonactin. The energies of these conformations were calculated by taking into account the nonbonded interactions among the 116 atoms of the molecule and the torsional potential energy of the 20 rotatable backbone bonds of the ring. The initial results reported in this paper indicate that even in the absence of potassium ion the nonactin ring folds into the same compact tennis-ball seam-like conformation that was found by an X-ray crystallographic investigation of the nonactin/KNCS complex.  相似文献   

15.
Teske  Peter R.  Wooldridge  Tris 《Hydrobiologia》2001,464(1-3):227-243
Thirteen estuaries in the Eastern Cape Province, South Africa, were broadly categorised according to size and salinity distribution and were assigned to one of the following categories: permanently open estuaries having a strong salinity gradient between mouth and upper estuary, freshwater-deprived permanently open estuaries, medium-sized temporarily open/closed estuaries, and small, temporarily open/closed estuaries. The macrobenthos collected during surveys was then compared in terms of the following parameters: species composition, salinity, sediment mud content, density of macrobenthic animals, Hill's N0 (species richness), and Hill's N1 (diversity). Mud content was found to be the most important environmental variable responsible for biotic patterns found, and sites were consequently assigned to either a sand zone fauna, or a mud zone fauna. Both types of fauna are present in all estuaries sampled, with upper sites of river dominated estuaries having an additional oligohaline fauna, and freshwater-deprived estuaries providing habitat for many marine species. Small, temporarily open/closed estuaries have the highest macrobenthic density, whereas N0 and N1 are highest in freshwater-deprived permanently open systems. River-dominated permanently open estuaries tend to have lower macrobenthic densities, species richness, and diversities compared to estuaries in the other categories. No seasonal differences in these ecological indices were found within any of the estuarine categories.  相似文献   

16.
Binding ATP to tryptophanyl-tRNA synthetase (TrpRS) in a catalytically competent configuration for amino acid activation destabilizes the enzyme structure prior to forming the transition state. This conclusion follows from monitoring the titration of TrpRS with ATP by small angle solution X-ray scattering, enzyme activity, and crystal structures. ATP induces a significantly smaller radius of gyration at pH=7 with a transition midpoint at approximately 8mM. A non-reciprocal dependence of Trp and ATP dissociation constants on concentrations of the second substrate show that Trp binding enhances affinity for ATP, while the affinity for Trp falls with the square of the [ATP] over the same concentration range ( approximately 5mM) that induces the more compact conformation. Two distinct TrpRS:ATP structures have been solved, a high-affinity complex grown with 1mM ATP and a low-affinity complex grown at 10mM ATP. The former is isomorphous with unliganded TrpRS and the Trp complex from monoclinic crystals. Reacting groups of the two individually-bound substrates are separated by 6.7A. Although it lacks tryptophan, the low-affinity complex has a closed conformation similar to that observed in the presence of both ATP and Trp analogs such as indolmycin, and resembles a complex previously postulated to form in the closely-related TyrRS upon induced-fit active-site assembly, just prior to catalysis. Titration of TrpRS with ATP therefore successively produces structurally distinct high- and low-affinity ATP-bound states. The higher quality X-ray data for the closed ATP complex (2.2A) provide new structural details likely related to catalysis, including an extension of the KMSKS loop that engages the second lysine and serine residues, K195 and S196, with the alpha and gamma-phosphates; interactions of the K111 side-chain with the gamma-phosphate; and a water molecule bridging the consensus sequence residue T15 to the beta-phosphate. Induced-fit therefore strengthens active-site interactions with ATP, substantially intensifying the interaction of the KMSKS loop with the leaving PP(i) group. Formation of this conformation in the absence of a Trp analog implies that ATP is a key allosteric effector for TrpRS. The paradoxical requirement for high [ATP] implies that Gibbs binding free energy is stored in an unfavorable protein conformation and can then be recovered for useful purposes, including catalysis in the case of TrpRS.  相似文献   

17.
The solution nuclear magnetic resonance (NMR) structures and backbone (15)N dynamics of the specialized acyl carrier protein (ACP), RpAcpXL, from Rhodopseudomonas palustris, in both the apo form and holo form modified by covalent attachment of 4'-phosphopantetheine at S37, are virtually identical, monomeric, and correspond to the closed conformation. The structures have an extra α-helix compared to the archetypical ACP from Escherichia coli, which has four helices, resulting in a larger opening to the hydrophobic cavity. Chemical shift differences between apo- and holo-RpAcpXL indicated some differences in the hinge region between α2 and α3 and in the hydrophobic cavity environment, but corresponding changes in nuclear Overhauser effect cross-peak patterns were not detected. In contrast to the NMR structures, apo-RpAcpXL was observed in an open conformation in crystals that diffracted to 2.0 ? resolution, which resulted from movement of α3. On the basis of the crystal structure, the predicted biological assembly is a homodimer. Although the possible biological significance of dimerization is unknown, there is potential that the resulting large shared hydrophobic cavity could accommodate the very long-chain fatty acid (28-30 carbons) that this specialized ACP is known to synthesize and transfer to lipid A. These structures are the first representatives of the AcpXL family and the first to indicate that dimerization may be important for the function of these specialized ACPs.  相似文献   

18.
The mechanosensitive channel from Escherichia coli (Eco-MscL) responds to membrane lateral tension by opening a large, water-filled pore that serves as an osmotic safety valve. In an attempt to understand the structural dynamics of MscL in the closed state and under physiological conditions, we have performed a systematic site-directed spin labeling study of this channel reconstituted in a membrane bilayer. Structural information was derived from an analysis of probe mobility, residue accessibility to O(2) or NiEdda and overall intersubunit proximity. For the majority of the residues studied, mobility and accessibility data showed a remarkable agreement with the Mycobacterium tuberculosis crystal structure, clearly identifying residues facing the large water-filled vestibule at the extracellular face of the molecule, the narrowest point along the permeation pathway (residues 21-26 of Eco-MscL), and the lipid-exposed residues in the peripheral transmembrane segments (TM2). Overall, the present dataset demonstrates that the transmembrane regions of the MscL crystal structure (obtained in detergent and at low pH) are, in general, an accurate representation of its structure in a membrane bilayer under physiological conditions. However, significant differences between the EPR data and the crystal structure were found toward the COOH-terminal end of TM2.  相似文献   

19.
1-15N-L-Tryptophan (1-15N-L-Trp) was synthesized from 15N-aniline by a Sandmeyer reaction, followed by cyclization to isatin, reduction to indole with LiAlH4, and condensation of the 15N-indole with L-serine, catalyzed by tryptophan synthase. 1-15N-L-Trp was complexed with wild-type tryptophan synthase and beta-subunit mutants, betaK87T, betaD305A, and betaE109D, in the absence or presence of the allosteric ligands sodium chloride and disodium alpha-glycerophosphate. The enzyme complexes were observed by 15N-heteronuclear single-quantum coherence nuclear magnetic resonance (15N-HSQC NMR) spectroscopy for the presence of 1-15N-L-Trp bound to the beta-active site. No 15N-HSQC signal was detected for 1-15N-L-Trp in 10 mm triethanolamine hydrochloride buffer at pH 8. 1-15N-L-Trp in the presence of wild-type tryptophan synthase in the absence or presence of 50 mm sodium chloride showed a cross peak at 10.25 ppm on the 1H axis and 129 ppm on the 15N axis as a result of reduced solvent exchange for the bound 1-15N-L-Trp, consistent with formation of a closed conformation of the active site. The addition of disodium alpha-glycerophosphate produced a signal twice as intense, suggesting that the equilibrium favors the closed conformation. 15N-HSQC NMR spectra of betaK87T and betaE109D mutant Trp synthase with 1-15N-L-Trp showed a similar cross peak either in the presence or absence of disodium alpha-glycerophosphate, indicating the preference for a closed conformation for these mutant proteins. In contrast, the betaD305A Trp synthase mutant only showed a 15N-HSQC signal in the presence of disodium alpha-glycerophosphate. Thus, this mutant Trp synthase favored an open conformation in the absence of disodium alpha-glycerophosphate but was able to form a closed conformation in the presence of disodium alpha-glycerophosphate. Our results demonstrate that the 15N-HSQC NMR spectra of 1-15N-L-Trp bound to Trp synthase can be used to determine the conformational state of mutant forms in solution rapidly. In contrast, UV-visible spectra of wild-type and mutant Trp synthase in the presence of L-Trp with NaCl and/or disodium alpha-glycerophosphate are more difficult to interpret in terms of altered conformational equilibria.  相似文献   

20.
Proline occurs frequently in transmembrane alpha-helices of transport and receptor proteins even though statistical surveys demonstrate the overwhelming preference of this residue for a non-alpha-helical, hydrophilic environment. As a result, membrane-buried proline has been proposed to be functionally important, with function arising from structural discontinuity or destabilization of the helix. Destabilization may occur by Pro-mediated conformational transitions between discrete states, and may be manifested in membrane protein systems through reversible processes such as channel opening and closing or signal transduction. In this study, computer modeling of a model transmembrane alpha-helix, (Ala)8-Leu-Pro-Phe-(Ala)8, in a medium of low polarity (dielectric = 2), is used to examine the occurrence and energetic accessibility of Pro-mediated conformational interconversions. Leu psi and chi 1, Pro psi, and Phe phi and chi 1 torsion angles were assigned random values so that a data base of 200 conformations for each of the cis and trans states was generated. The conformations were minimized and low-energy structures organized into families. This analysis demonstrated that the most populated lowest energy family is the Trans-I conformation, corresponding to proline in a kinked alpha-helix. Two additional trans structures, Trans-II and Trans-III, as well as a cis conformation, Cis-I, are also energetically competitive. Interconversions between the trans states could thus be mediated by changes at a single torsion angle, accompanied by minor local hydrogen-bonding rearrangements. This work substantiates that membrane-buried proline can provide the basis for conformational transitions between discrete alpha-helix-based structures in a nonpolar environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号