首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monoclonal antibodies coupled to highly toxic molecules (immunoconjugates) are currently being developed for cancer therapy. We have used an in silico procedure for evaluating some physicochemical properties of two tumor-targeting anti-HER2 immunoconjugates: (a) the single-chain antibody scFv(FRP5) linked to a bacterial toxin, that has been recently progressed to phase I clinical trial in human cancer; (b) the putative molecule formed by the intrinsically stable scFv(800E6), which has been proposed as toxin carrier to cancer cells in human therapy, joined to the same toxin of (a). Structural models of the immunoconjugates have been built by homology modeling and assessed by molecular dynamics simulations. The trajectories have been analyzed to extract some biochemical properties and to assess the potential effects of the toxin on the structure and dynamics of the anti-HER2 antibodies. The results of the computational approach indicate that the antibodies maintain their correct folding even in presence of the toxin, whereas a certain stiffness in correspondence of some structural regions is observed. Furthermore, the toxin does not seem to affect the antibody solubility, whereas it enhances the structural stability. The proposed computational approach represent a promising tool for analyzing some physicochemical properties of immunoconjugates and for predicting the effects of the linked toxin on structure, dynamics, and functionality of the antibodies.  相似文献   

2.
Sialoadhesin is exclusively expressed on specific subpopulations of macrophages. Since sialoadhesin-positive macrophages are involved in inflammatory autoimmune diseases, such as multiple sclerosis, and potentially in the generation of immune responses, targeted delivery of drugs, toxins or antigens via sialoadhesin-specific immunoconjugates may prove a useful therapeutic strategy. Originally, sialoadhesin was characterized as a lymphocyte adhesion molecule, though recently its involvement in internalization of sialic acid carrying pathogens was shown, suggesting that sialoadhesin is an endocytic receptor. In this report, we show that porcine sialoadhesin-specific antibodies and F(ab'')2 fragments trigger sialoadhesin internalization, both in primary porcine macrophages and in cells expressing recombinant porcine sialoadhesin. Using chemical inhibitors, double immunofluorescence stainings and dominant-negative constructs, porcine sialoadhesin internalization was shown to be clathrin- and Eps15-dependent and to result in targeting to early endosomes but not lysosomes. Besides characterizing the sialoadhesin endocytosis mechanism, two sialoadhesin-specific immunoconjugates were evaluated. We observed that porcine sialoadhesin-specific immunotoxins efficiently kill sialoadhesin-expressing macrophages. Furthermore, porcine sialoadhesin-specific albumin immunoconjugates were shown to be internalized in macrophages and immunization with these immunoconjugates resulted in a rapid and robust induction of albumin-specific antibodies, this compared to immunization with albumin alone. Together, these data expand sialoadhesin functionality and show that it can function as an endocytic receptor, a feature that cannot only be misused by sialic acid carrying pathogens, but that may also be used for specific targeting of toxins or antigens to sialoadhesin-expressing macrophages.  相似文献   

3.
Beck  E.  Hofmann  M.  Bernhardt  G.  Jäger  W.  Wildt  L.  Lang  N. 《Cell biochemistry and biophysics》1994,24(1-3):163-173
Cis-diammine dichloro platinum (II) (CDDP), is a highly potent antineoplastic agent that is used in the treatment of ovarian cancer. However, the clinical use of CDDP is restricted by its severe side effects. In order to reduce these side effects and to enhance its therapeutic efficacy, we developed specific immunoconjugates consisting of the murine monoclonal antibody OC125 and CDDP, using diethylene triamine pentaacetic acid (DTPA) as a linker. The coupling efficiencies of the different preparations synthesized, varied between 1.10±0.42 and 2.65±1.60 mol of CDDP per mol of antibody protein. Despite the chemical modification of the antibody molecule, specific binding activity of the OC125-CDDP conjugates toward the CA125 antigen was maintained as was demonstrated by means of immunohisto-/cytochemical staining of frozen sections of ovarian cancer tissue, amniotic epithelium, and the CA125 positive ovarian cancer cell line NIH:OVCAR 3. The antiproliferative activity of the immunoconjugates was tested against the human ovarian cancer cell lines NIH:OVCAR3 and SKOV 3, applying a kinetic crystal violet microassay. Despite the promising results obtained with the specific immuno-staining of the target cells, no significant antiproliferative activity of our immunoconjugates against the cell lines tested was observed. One possible explanation for the lack of antitumor activity could be the fact that CA125 is released in large amounts by the NIH:OVCAR 3 cells. This may have prevented an efficient immunotargeting of the cancer cells by the formation of soluble immune complexes.  相似文献   

4.
本文综述了制备单克隆抗体免疫偶合物的三种方法,即抗体与药物直接交联的方法,药物通过小分子与抗体连接的戊二醛法、顺乌头酸酐法、活性酯法、N-琥珀酰胺基-3-(2-吡啶基二硫)丙酸法(SPDP法)、腙衍生物法和肽键连接等方法,以及用大分子做载体的交联方法,并介绍了葡聚糖、聚谷氨酸、聚赖氨酸和聚合多肽作载体的性质和应用情况。  相似文献   

5.
The importance of the various structural elements constituting a ricin A chain immunotoxin to the stability of the disulfide bond between the antibody and A chain was examined using a panel of immunoconjugates prepared with the mouse monoclonal antibody Fib75. Analogues of the standard ricin A chain immunotoxin prepared with the N-succinimidyl 3-(2-pyridyldithio)propionate disulfide cross-linker included immunoconjugates made with N-succinimidyl 4-[(iodoacetyl)amino]benzoate the thioether cross-linker; with N-succinimidyl 3-(2-pyridyldithio)butyrate, the hindered disulfide cross-linker; with a peptide spacer between the antibody and cross-linker; or with the dodecapeptide corresponding to the C-terminus of ricin A chain. The cytotoxic activities of the immunoconjugates and their susceptibility to reduction by glutathione in vitro were compared. The thioether-linked immunotoxin could not be cleaved by glutathione in vitro and had low cytotoxic potency, consistent with the requirement of a reducible disulfide linkage for activity. The hindered disulfide-linked immunotoxin was 3-fold more stable to reduction than the immunotoxin containing a standard unhindered disulfide linkage, but the cytotoxic activities of the two constructs were indistinguishable. The introduction of a flexible peptide Ala-Ala-Pro-Ala-Ala-Ala-Pro-Ala-Pro-Ala between Fib75 and the disulfide linkage introduced by SPDP had no deleterious effect on cytotoxic activity and no effect on the susceptibility of the disulfide linkage to reduction. This finding suggests that the enforced proximity of the A chain to the antibody caused by the use of a short chemical cross-linker in a conventional immunotoxin has no influence on either of these properties in this system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Two murine monoclonal antibodies, G3.519, recognizing the CD4-binding region, and BAT123, a variable region of gp120 of human immunodeficiency virus, were chemically coupled to pokeweed antiviral protein isolated from seeds (PAP-S). The immunoconjugates were purified by Sephacryl S-200 gel filtration and Mono S ion exchange chromatography. Immunoconjugate G3.519-PAP-S specifically killed human T cells, H9, infected with three diverse HIV-1 strains, HTLV-IIIB, -IIIMN, and -IIIRF. Inhibition of thymidine incorporation by the immunoconjugate was concentration-dependent, with the ID50 ranging from 1.4 x 10(-10) M to 1.7 x 10(-9) M. Immunoconjugate BAT123-PAP-S was effective in killing H9 cells infected with HTLV-IIIB (ID50 = 4.3 x 10(-11) M) and -IIIMN (ID50 = 4.7 x 10(-10) M), but not -IIIRF. Both immunoconjugates did not inhibit thymidine incorporation in uninfected H9 cells up to a concentration of 5.3 x 10(-8) M, and their cytotoxic activities could be competitively blocked by the respective unconjugated antibodies. The immunoconjugates retained the ability to neutralize HIV virions to infect T cells and to prevent the syncytium formation. These in vitro studies suggest that the use of immunoconjugates capable of killing HIV-infected T cells and neutralizing virus may provide an alternative treatment for HIV-infected persons.  相似文献   

7.
Some cytotoxic immunoconjugates have been approved for malignant lymphoma, a representative of hypervascular and stroma-poor tumors. However, many human solid tumors possess abundant intercellular stromata that prevent diffusion of cancer cell-specific monoclonal antibodies (mAb) and become a barrier preventing immunoconjugates from directly attacking cancer cells. Here we show the successful development of a new strategy that overcomes this drawback and achieves a highly localized concentration of a topoisomerase I inhibitor, SN 38, by conjugating it via an ester bond to a mAb targeted against collagen 4, a plentiful component of the tumor stroma. Poly(ethylene glycol) (PEG) was utilized as a spacer, close to each bond, to maintain stability in the blood. Immunoconjugates selectively extravasated from leaky tumor vessels and minimally from normal vessels because the immunoconjugates are too large to pass through normal vessel walls. Stroma-targeting immunoconjugates bound to the stroma to create a scaffold, from which sustained release of cytotoxic agent occurred and the agent subsequently diffused throughout the tumor tissue to damage both tumor cells and vessels. Cancer-stroma-targeting immunoconjugate therapy was thus validated as a new modality of oncological therapy, especially for refractory, stromal-rich cancers.  相似文献   

8.
Background: Monoclonal antibodies (MAbs) can target therapy to tumours while minimising normal tissue exposure. Efficacy of immunoconjugates containing peptide 101, designed around the first 22 amino acids of bee venom, melittin, to maintain the amphipathic helix, to enhance water solubility, and to increase hemolytic activity, was assessed in nude mice bearing subcutaneous human prostate cancer xenografts. Methods: Mouse MAbs, J591 and BLCA-38, which recognise human prostate cancer cells, were cross-linked to peptide 101 using SPDP. Tumour-bearing mice were used to compare biodistributions of radiolabeled immunoconjugates and MAb, or received multiple sequential injections of immunoconjugates. Therapeutic efficacy was assessed by delay in tumour growth and increased mouse survival. Results: Radiolabeled immunoconjugates and antibodies showed similar xenograft tropism. Systemic or intratumoural injection of immunoconjugates inhibited tumour growth in mice relative to carrier alone, unconjugated antibody and nonspecific antibody-peptide conjugates and improved survival for treated mice. Conclusions: Immunoconjugates deliver beneficial effects; further peptide modifications may increase cytotoxicity.  相似文献   

9.

Background

Anti-HIV immunoconjugates targeted to the HIV envelope protein may be used to eradicate the latent reservoir of HIV infection using activate-and-purge protocols. Previous studies have identified the two target epitopes most effective for the delivery of cytotoxic immunoconjugates the CD4-binding site of gp120, and the hairpin loop of gp41. Here we construct and test tetravalent double variable domain immunoglobulin molecules (DVD-Igs) that bind to both epitopes.

Methods

Synthetic genes that encode DVD-Igs utilizing V-domains derived from human anti-gp120 and anti-gp41 Abs were designed and expressed in 293F cells. A series of constructs tested different inter-V-linker domains and orientations of the two V domains. Antibodies were tested for binding to recombinant Ag and native Env expressed on infected cells, for neutralization of infectious HIV, and for their ability to deliver cytotoxic immunoconjugates to infected cells.

Findings

The outer V-domain was the major determinant of binding and functional activity of the DVD-Ig. Function of the inner V-domain and bifunctional binding required at least 15 AA in the inter-V-domain linker. A molecular model showing the spatial orientation of the two epitopes is consistent with this observation. Linkers that incorporated helical domains (A[EAAAK]nA) resulted in more effective DVD-Igs than those based solely on flexible domains ([GGGGS]n). In general, the DVD-Igs outperformed the less effective parental antibody and equaled the activity of the more effective. The ability of the DVD-Igs to deliver cytotoxic immunoconjugates in the absence of soluble CD4 was improved over that of either parent.

Conclusions

DVD-Igs can be designed that bind to both gp120 and gp41 on the HIV envelope. DVD-Igs are effective in delivering cytotoxic immunoconjugates. The optimal design of these DVD-Igs, in which both domains are fully functional, has not yet been achieved.  相似文献   

10.
Fullerene (C(60))-monoclonal antibody (mAb) immunoconjugates have been determined to internalize into target cells using water-soluble Gd(3+) ion-filled metallofullerenes (Gd@C(60)[OH](x)). Two separate conjugations of Gd@C(60)(OH)(x) with the antibody ZME-018 and a murine antibody mixture (MuIgG) were performed in a 1:5 mAb/Gd@C(60) ratio. Characterization of the immunoconjugates was established using inductively coupled plasma mass spectrometry (ICP-MS) for Gd(3+) and UV-Vis spectrometry (for Gd@C(60) + C(60)). Once conjugated, enzyme-linked immunosorbent assays showed little change in the specific binding of ZME-018. Each immunoconjugate was exposed to two cancer cell lines, A375m (antigen positive), and T24, bladder carcinoma (antigen negative). Internalization levels of the immunoconjugate were determined at various time points during 24 hours by harvesting and digesting the cells with 70% HNO(3) for Gd(3+) ion analysis by ICP-MS. These results are the first to demonstrate the practicality of a targeted cancer therapy based on fullerene immunotherapy.  相似文献   

11.
We tested drug monoclonal antibody immunoconjugates in vitro in 72 h 3H-thymidine assays and in vivo in athymic mice bearing human tumor xenografts of the same target cells. Experimental arms included control, monoclonal antibody, drug, drug + antibody, the test immunoconjugate, and a negative control immunoconjugate with an equivalent molar amount of drug for in vitro experiments, and the amount of drug conjugated to 500 micrograms of antibody in the animal experiments. Monoclonal antibodies included T101, an IgG2a that reacts with a rapidly modulating antigen, 9.2.27, an IgG2a that reacts with a slowly modulating antigen, and ME7, an IgG1 that reacts with a slowly modulating antigen. Cells used in testing included MOLT-4 (T lymphoma), 8392 (B lymphoma), and M21 (melanoma). Drugs tested were doxorubicin, daunorubicin, methotrexate, and mitomycin-C. M21 cells were resistant to daunorubicin in vitro but were inhibited by the 9.2.27 daunorubicin immunoconjugate. T101, 9.2.27, and ME7 cis-aconitate anthracycline immunoconjugates and mitomycin-C-glutarate immunoconjugates were specifically cytotoxic only for antigen positive cells in vitro and were superior to free drug in vivo. These results confirm that antigen specific-cytotoxic drug immunoconjugates can be produced that are superior to the same dose of free drug. However, each monoclonal antibody drug target system is unique and must be well-characterized for appropriate interpretation of data.  相似文献   

12.
A set of anti-melanoma immunoconjugates were prepared which contained chlorin e6: antibody molar ratios of 18.9:1, 11.2:1, 6.8:1, and 1.7:1. All immunoconjugates retained antigen binding activity regardless of the chromophore:antibody substitution ratio that was attained. In contrast, the ground-state absorption spectra of the immunoconjugates showed features which appeared to be dependent on the chromophore:antibody molar ratio. In addition, the quantum yield of singlet oxygen generated by the conjugated chromophores was observed to be significantly less than that observed with the unbound dye. Time-resolved absorbance spectroscopy of the chromophore excited triplet state indicated that the loss of singlet oxygen quantum yield resulted from diminished chromophore triplet yield. Analysis of data obtained from in vitro photolysis of target melanoma cells, in combination with that obtained from the immunochemical and photochemical studies, indicates that the observed immunoconjugate phototoxicity can be reasonably quantitatively represented by (1) the ability of the immunoconjugate to bind SK-MEL-2 cell surface antigen, (2) the amount of chromophore localized at the target cells by immunoconjugate binding, (3) the delivered dose of light at 634 nm, and (4) the singlet oxygen quantum yield of the antibody-bound photosensitizer. Though these data argue strongly for photolysis by the cumulative dosage of singlet oxygen at the cell membrane, nonetheless, the concurrent photoinduced release of other cytotoxic agents should not be ruled out.  相似文献   

13.
There is increasing interest in the development of daunomycin-antibody immunoconjugates for the targeting of drug to specific cells or tissues. To this end, we have examined the factors influencing the synthesis of daunomycin-monoclonal antibody conjugates linked covalently by an acid-labile cis-aconitic spacer (which is considered to aid drug release from immunoconjugates in the lysosomes and thus enhance their cytotoxic potential). A rapid and efficient procedure for the purification of drug from contaminants and stabilizers was first developed; conditions for the optimal preparation of cis-aconityldaunomycin were established; products were analyzed and identified by TLC and HPLC. The coupling of cis-aconityldaunomycin to antibody was accomplished by activating the modified drug with a carbodiimide before addition to antibody. Several factors were identified which influenced the efficiency of the conjugation; in particular, the compositional features of the antibody which determine its electrophoretic charge characteristics were of profound effect. However, by appropriate choice and control of buffer pH during conjugation, it was possible to define conditions resulting in the controlled substitution of antibody with drug. The consequent effects upon the cell-binding activity of immunoconjugates were established and related to the extent of substitution. The procedures described enable appropriate reaction conditions to be selected for the linkage of daunomycin to antibody (at set drug/antibody molar ratios) and in good yield, based upon consideration of the compositional and charge properties of the antibody.  相似文献   

14.
Monoclonal antibody drug immunoconjugates for targeted treatment of cancer   总被引:9,自引:0,他引:9  
Monoclonal antibodies (mAb) directed to tumor-associated antigens (TAA) or antigens differentially expressed on the tumor vasculature have been covalently linked to drugs that have different mechanisms of action and various levels of potency. The use of these mAb immunoconjugates to selectively deliver drugs to tumors has the potential to both improve antitumor efficacy and reduce the systemic toxicity of therapy. Several immunoconjugates, particularly those that incorporate internalizing antibodies and tumor-selective linkers, have demonstrated impressive activity in preclinical models. Immunoconjugates that deliver doxorubicin, maytansine and calicheamicin are currently being evaluated in clinical trials. The feasibility of using immunoconjugates as cancer therapeutics has been clearly demonstrated. Gemtuzumab ozogamicin, a calicheamicin conjugate that targets CD33, has recently been approved by the Food and Drug Administration (FDA) for treatment of acute myelogenous leukemia (AML). This review concentrates on the properties of the tumor and the characteristics of the mAb, linker, and drugs that influence the efficacy, potency, and selectivity of immunconjugates selected for cancer treatment.  相似文献   

15.
Summary Adriamycin hydrazone (ADM-Hzn) immunoconjugates have previously been shown to exhibit antibody-directed antitumor activity in vitro and in vivo. In this report, the biological and biochemical properties of the mAb and linker were investigated. Conjugates prepared with two antibodies 5E9 [anti-(transferrin receptor)] and G28.1 (anti-CD37), (which internalize from the surface of target cells following binding) were more cytotoxic in vitro and had greater antitumor activity against Daudi B lymphoma tumor xenografts than a non-internalizing immunoconjugate prepared with mAb 2H7 (anti-CD20). In addition, the 13-acylhydrazone bond linking the drug to the mAb was labile at pH 5 and released unmodified ADM at a rapid rate (t1/2 = 2.5 h). Immunoconjugates prepared with an oxime linkage at the C-13 position were stable to acid and were not cytotoxic. These findings suggest that internalization of ADM-Hzn immunoconjugates and release of free ADM from the mAb in acidic intracellular compartments were important steps in the mechanism of action of ADM-Hzn immunoconjugates.  相似文献   

16.
Dhawan S 《Peptides》2002,23(12):2099-2110
Spherical polystyrene microparticles expressing a large number of highly reactive functional groups were chemically engineered to generate antibody–enzyme conjugates as novel signal amplification systems. Chemically modified goat anti-human IgG and horseradish peroxidase (HRP) were combined in a 1:5 ratio and attached to 0.44 μm streptavidin microparticles or N-succinimidyl-S-acetylthioacetate (SATA)-activated 0.29 μm amino microparticles with highly reactive free sulfhydryl groups on their surface. The numbers of HRP molecules/microparticle were further increased by coupling HRP to primary amines on N-terminal biotinylated or bromoacetylated polypeptides containing 20 lysine residues prior to conjugation with streptavidin or sulfhydryl groups-containing microparticles. The antibody–poly-HRP immunoconjugates contained an estimated number of 105 HRP/streptavidin microparticle and 106 HRP/amino microparticle, respectively. These microparticle immunoconjugates efficiently bound to plasma anti-HIV-1 antibodies that had been captured by HIV antigens on 5 μm carboxyl magnetic microparticles and, upon reaction with orthophenyldiamine substrate, produced a detection signal with 5–8 times more sensitivity as compared to conventional HRP-conjugated goat anti-human IgG. The signal amplification technique by microparticle immunoconjugates may provide potentially novel tools for the development of highly sensitive diagnostic systems.  相似文献   

17.
HER2-ECD (human epidermal growth factor receptor 2 – extracellular domain) is a prominent therapeutic target validated for treating HER2-positive breast and gastric cancer, but HER2-specific therapeutic options for treating advanced gastric cancer remain limited. We have developed antibody-drug conjugates (ADCs), comprising IgG1 linked via valine-citrulline to monomethyl auristatin E, with potential to treat HER2-positive gastric cancer in humans. The antibodies optimally selected from the ADC discovery platform, which was developed to discover antibody candidates suitable for immunoconjugates from synthetic antibody libraries designed using antibody-antigen interaction principles, were demonstrated to be superior immunoconjugate targeting modules in terms of efficacy and off-target toxicity. In comparison with the two control humanized antibodies (trastuzumab and H32) derived from murine antibody repertoires, the antibodies derived from the synthetic antibody libraries had enhanced receptor-mediated internalization rate, which could result in ADCs with optimal efficacies. Along with the ADCs, two other forms of immunoconjugates (scFv-PE38KDEL and IgG1-AL1-PE38KDEL) were used to test the antibodies for delivering cytotoxic payloads to xenograft tumor models in vivo and to cultured cells in vitro. The in vivo experiments with the three forms of immunoconjugates revealed minimal off-target toxicities of the selected antibodies from the synthetic antibody libraries; the off-target toxicities of the control antibodies could have resulted from the antibodies’ propensity to target the liver in the animal models. Our ADC discovery platform and the knowledge gained from our in vivo tests on xenograft models with the three forms of immunoconjugates could be useful to anyone developing optimal ADC cancer therapeutics.  相似文献   

18.
 The anthracycline doxorubicin (DOX) is one of the most effective drugs for the treatment of small-cell lung cancer (SCLC), but its clinical application is limited by unspecific side-effects like cardiotoxicity. In the present study doxorubicin was conjugated to the monoclonal antibodies (mAb) SEN7, MOC31, and SWA11 via a novel acid-sensitive hydrazone linker. These mAb recognize SCLC-associated antigens of cluster 1 (NCAM), cluster 2 (EGP-2/GA733-2), and cluster 4 (CD24) respectively. To assess their potential therapeutic use against SCLC, the antigen-binding activities, the rates of internalization and the cytotoxic effects of the immunoconjugates were examined on tumour cell lines. The preparation procedure preserved the antigen-binding activities of the mAb and yielded immunoconjugates with average drug : mAb ratios of 7 : 1. The hydrazone linker was found to be stable at neutral pH but to release doxorubicin under acidic conditions. In contrast to SEN7-DOX, MOC31-DOX and SWA11-DOX were rapidly internalized into SCLC target cells upon binding to their specific cell-surface antigens. Accordingly, both immunoconjugates proved to be highly cytotoxic agents, inhibiting thymidine incorporation by 50% at concentrations between 0.5 μM and 1 μM and were 100-fold more selective than free doxorubicin. The results suggest that binding to selective cell-surface antigens, rapid internalization and efficient release of doxorubicin from the mAb by acid hydrolysis are required for the selective and potent function of the immunoconjugates. In particular, the use of MOC31-DOX for targeted cytotoxic therapy might be promising because of the limited cross-reactivity of the mAb with normal human tissues and its recently demonstrated tumour localization potential in SCLC patients. Received: 22 September 1995 / Accepted: 23 November 1995  相似文献   

19.
20.
抗肿瘤基因工程单链抗体导向药物研究进展   总被引:3,自引:0,他引:3  
过去30年肿瘤治疗取得了极大的进步,基因工程技术推动了肿瘤免疫治疗的发展,以基因工程为基础的单链抗体导向药物成为肿瘤免疫治疗的新热点,其用于治疗肿瘤的药物研究取得了重大进展。研究表明,基因工程单链抗体导向药物能特异性结合肿瘤相关靶点,对肿瘤细胞有选择性的杀伤作用,并在动物实验中有显著的疗效。基因工程单链抗体导向药物在肿瘤治疗中将发挥重要作用,具有广阔的应用前景。综述了这一领域的发展,并对其前景进行了预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号