首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We previously showed that a metalloprotease and a serine protease mediate shedding of the TNF-R75 (75-kDa tumor necrosis factor receptor) in neutrophils. Here we show that elastase is the TNF-R75 solubilizing serine protease. Release of the TNF-R75 by resting cells was almost totally inhibited by the serine protease inhibitor diisopropylfluorophosphate (DFP), by two synthetic, chemically unrelated, elastase-specific inhibitors and by alpha1-protease inhibitor. Release after TNF or FMLP (N-formyl-L-methionyl-L-leucyl-L-phenylalanine) stimulation was blocked by DFP and a metalloprotease inhibitor used in combination. Supernatants from resting neutrophils contained a 28-kDa fragment of the receptor, compatible with that generated by elastase, whose appearance was inhibited by DFP. Upon FMLP stimulation, the release of 28-kDa and 40-kDa fragments was observed, which was inhibited by DFP and a metalloprotease inhibitor, respectively. We conclude that elastase is the TNF-R75 sheddase of resting neutrophils and that it contributes to shedding of this receptor in stimulated cells.  相似文献   

2.
Expression of the two known receptors for TNF was studied in the promyelocytic leukemia cell line HL-60 before and after differentiation of the cells along the granulocyte lineage (induced by incubation with retinoic acid), or along the macrophage lineage (induced by incubation with the phorbol diester, PMA). The extent of inhibition of TNF binding by receptor-specific antisera, as well as the size of the complexes formed after cross-linking TNF to its receptors on intact cells, indicated that both receptor species were expressed on the surface of the undifferentiated HL60 cells. Differentiation into granulocyte-like cells resulted in some increase in TNF binding. The increase was apparently due to enhanced expression of the 75-kDa TNF-R, whereas the amounts of the 55-kDa TNF-R did not change significantly. In contrast, in HL-60 cells induced to differentiate into macrophage-like cells, expression of the 55-kDa TNF-R species was completely abolished. The pattern of TNF-R expression in the differentiated HL-60 cells was similar to that observed in leukocytes isolated from peripheral blood: on granulocytes, there were about equal amounts of both receptor species, whereas on monocytes the 75-kDa receptor was predominant. The loss of 55-kDa receptors during differentiation of HL-60 cells into macrophage-like cells was accompanied by a pronounced decrease in the level of the mRNA for that receptor, suggesting that at least part of the change in TNF-R expression is due to mechanisms that control the amounts of receptor mRNA. Although little is yet known regarding the functional differences between the two receptor species, marked changes in the pattern of their expression, as observed during HL-60 cell differentiation, are likely to alter the kind of response of the cells to TNF and may therefore play an important role in the coordination of TNF effects in the organism.  相似文献   

3.
Tumor necrosis factor (TNF) has pleiotropic effects including on hepatic metabolism. Here we investigated the effect of high cholesterol diet (1.25%) in TNF deficient mice. TNFalpha/beta deficient mice developed hepatomegaly and extensive steatosis in the absence of steatohepatitis as compared to wild type mice. Saturated and unsaturated, prominently mono- but also poly-unsaturated fatty acids (MUFA, PUFA) prevailed in steatotic livers. Down-regulation of the cholesterol scavenger receptor B1 and reduced insulin induced phosphorylation of protein kinase B in cholesterol fed TNFalpha/beta deficient mice likely contributed to the development of hepatic steatosis, which was accompanied by increased body weight and bone length. Steatosis was only present in TNFalpha/beta double deficient mice, however not in single TNF deficient mice suggesting a redundant role of TNFalpha and TNFbeta. In conclusion, high cholesterol diet causes an abnormal metabolic phenotype in the simultaneous absence of both TNFalpha and beta signals. The presence of either TNFalpha or beta alone is sufficient to reconstitute the control of lipid homeostasis.  相似文献   

4.
A down-modulation of both the 55-kDa (TNF-R55) and the 75-kDa (TNF-R75) TNF receptors is observed in neutrophils exposed to a variety of stimuli. Proteolytic cleavage of the extracellular region of both receptors (shedding) and, with TNF, internalization of TNF-R55 and shedding of TNF-R75 are the proposed mechanisms. We have characterized the TNF-induced shedding of TNF receptors in neutrophils and determined the nature of the involved proteinase. Neutrophils exposed to TNF release both TNF receptors. A release of TNF receptors comparable to that observed with TNF was induced with TNF-R55-specific reagents (mAbs and a mutant of TNF) but not with the corresponding TNF-R75-specific reagents. A hydroxamic acid compound (KB8301) almost completely inhibited shedding of TNF-R55 and to a lesser degree shedding of TNF-R75. KB8301 also inhibited FMLP-induced shedding to a similar extent. Shedding was also inhibited by 1,10-phenanthroline, but this effect was considered nonspecific as the compound, at variance with KB8301, almost completely inhibited TNF and FMLP-induced PMN activation. Diisopropylfluorophosphate partially inhibited shedding of TNF-R75, suggesting the contribution of a serine proteinase to the release of this receptor. Shedding activity was not affected by matrix metalloproteinases inhibitors nor was it released in the supernatants of FMLP-stimulated neutrophils. These results suggest that TNF induces release of its receptors, that such a release is mediated via TNF-R55, and that a membrane-bound and non-matrix metalloproteinase is involved in the process. The possibility that ADAM-17, which we show to be expressed in neutrophils, might be the involved proteinase is discussed.  相似文献   

5.
We investigated the mechanisms by which serine proteases alter lung fluid clearance in rat lungs and vectorial ion transport in airway and alveolar epithelial cells. Inhibition of endogenous protease activity by intratracheal instillation of soybean trypsin inhibitor (SBTI) or alpha(1)-antitrypsin decreased amiloride-sensitive lung fluid clearance across rat fluid-filled lungs; instillation of trypsin partially restored this effect. Gelatin zymography demonstrated SBTI-inhibitable trypsin-like activity in rat lung lavage fluid. Apical trypsin and human neutrophil elastase, but not agonists of protease activated receptors, increased Na(+) and Cl(-) short-circuit currents (I(sc)) and transepithelial resistance (R(TE)) across human bronchial and nasal epithelial cells and rat alveolar type II cells, mounted in Ussing chambers, for at least 2 h. The increase in I(sc) was fully reversed by amiloride and glibenclamide. The increase in R(TE) was not prevented by ouabain, suggesting that trypsin decreased paracellular conductance. Apical trypsin also induced a transient increase in intracellular Ca(2+) in human airway cells; treatment of these cells with BAPTA-AM mitigated the trypsin-induced increases of intracellular Ca(2+) and of I(sc) and R(TE). Increasing intracellular Ca(2+) in airway cells with either ionomycin or thapsigargin reproduced the increase in I(sc), whereas inhibitors of phospholipase C (PLC) prevented the increases in both Ca(2+) and I(sc). These data indicate trypsin-like proteases and elastase, either present in lung cells or released by inflammatory cells into the alveolar space, play an important role in the clearance of alveolar fluid by increasing ion transport and paracellular resistance via a PLC-initiated rise of intracellular Ca(2+).  相似文献   

6.
As the human lung is exposed to a variety of microbial pathogens in the environment, a first line of defense is built up by pulmonary cells like bronchial/alveolar epithelial cells and alveolar macrophages. These cells express several pattern recognition receptors (PRRs) recognizing highly conserved microbial motifs and initiating the production of chemokines and pro- and anti-inflammatory cytokines acting as transmembrane or intracellular receptors. This might not only lead to acute but also to chronic inflammation which is discussed as an underlying mechanism in the pathogenesis of different lung diseases.  相似文献   

7.
Enterovirus 71 (EV71) infection causes hand-foot-and-mouth disease (HFMD) in children and might be accompanied by severe neurological complications. It has become one of the most important pathogens of central nervous system infection. To explore the causes of lung injury by EV71, the distribution of EV71 receptors, SCARB2 and PSGL-1, in human lung tissues was examined. Our results revealed that SCARB2 was positively distributed in the bronchial and bronchiolar epithelial cells, alveolar cells and macrophages, while PSGL-1 was positively scattered in bronchial and bronchiolar epithelial cells and macrophages, and negatively distributed in alveolar cells. The pathological changes of fatal lung with EV71 infection demonstrated intrapulmonary bronchitis and bronchiolitis, diffuse or focal infiltration of inflammatory cells, such as T cells and B cells in the wall and surrounding tissues, widened alveolar septum, capillaries in the septum with highly dilated and congested, and infiltrated inflammatory cells, showing different degrees of protein edema with fibrin exudation in the alveolar cavity, as well as obvious hyaline membrane formation in some alveolar cavities. The EV71 antigen in lung tissues was detected, and the viral antigen was positive in lung bronchial and bronchiolar epithelial cells, and positively scattered in the alveolar cells and macrophages. Therefore, in addition to the complications of central nervous system injury, the lung remains the main target organ for virus attack in severe EV71 infected patients. Lung injury was mainly caused by neurogenic damage and/or direct invasion of the virus into the lungs in critically serious children, and the lesions were mainly pulmonary edema and interstitial pneumonia.  相似文献   

8.
Beta2-Adrenergic agonists stimulate alveolar epithelial sodium (Na(+)) transport and lung fluid clearance. Alveolar type II (AT2) cells have been reported to express beta2-adrenergic receptors (beta2AR). Given the large surface area covered by alveolar type I (AT1) cells and their potential role in alveolar fluid removal, we were interested in learning if AT1 cells express beta2AR as well. Because beta2AR is potentially susceptible to desensitization by G-protein-coupled receptor kinase 2 (GRK2), we also undertook localization of GRK2. beta2AR and GRK2 expression was evaluated in whole lung, isolated alveolar epithelial cells (AECs), and AECs in primary culture, and was localized to specific AEC phenotypes by immunofluorescence techniques. beta2AR is highly expressed in AT1 cells. beta2AR mRNA increases with time in culture as AT2 cells transdifferentiate towards the AT1 cell phenotype. Immunoreactive GRK2 is seen in both AT1 and AT2 cells in similar amounts. These data suggest that both AT1 and AT2 cells may contribute to the increased alveolar Na(+) and water clearance observed after exposure to beta2 adrenergic agents. Both cell types also express GRK2, suggesting that both may undergo desensitization of beta2AR with subsequent decline in the stimulatory effects of beta2-adrenergic agonists over time.  相似文献   

9.
Ankyrin-G polypeptides are required for restriction of voltage-gated sodium channels, L1 cell adhesion molecules, and beta IV spectrin to axon initial segments and are believed to couple the Na/K-ATPase to the spectrin-actin network at the lateral membrane in epithelial cells. We report here that depletion of 190-kDa ankyrin-G in human bronchial epithelial cells by small interfering RNA results in nearly complete loss of lateral plasma membrane in interphase cells, and also blocks de novo lateral membrane biogenesis following mitosis. Loss of the lateral membrane domain is accompanied by an expansion of apical and basal plasma membranes and preservation of apical-basal polarity. Expression of rat 190-kDa ankyrin-G, which is resistant to human small interfering RNA, prevents loss of the lateral membrane following depletion of human 190-kDa ankyrin-G. Human 220-kDa ankyrin-B, a closely related ankyrin isoform, is incapable of preserving the lateral membrane following 190-kDa ankyrin-G depletion. Moreover, analysis of rat 190-kDa ankyrin G/ankyrin B chimeras shows that all three domains of 190-kDa ankyrin-G are required for preservation of the lateral membrane. These results demonstrate that 190-kDa ankyrin-G plays a pleiotropic role in assembly of lateral membranes of bronchial epithelial cells.  相似文献   

10.
To localize the protease(s) involved in shedding of tumor necrosis factor receptors (TNF-R) from activated neutrophils (PMN) (Porteu, F., and C. Nathan (1990) J. Exp. Med. 172, 599-607), we tested subcellular fractions from PMN for their ability to cause loss of TNF-R from intact cells. Exposure of PMN to sonicated azurophil granules at 37 degrees C resulted in inhibition of 125I-TNF binding; 50% inhibition ensued when PMN were treated for approximately 1 min with azurophil granules equivalent to 2-3 PMN per indicator cell. The TNF-R-degrading activity in azurophil granules were identified as elastase by its sensitivity to diisopropyl fluorophosphate (DFP), alpha 1-antitrypsin and N-methoxysuccinyl-Ala-Ala-Pro-Val chloromethyl ketone (MSAAPV-CK), and by the ability of purified elastase to reproduce the effect of azurophil granules. Elastase preferentially acted on the 75-kDa TNF-R, reducing by 85-96% the binding of 125I-TNF to mononuclear cells expressing predominantly this receptor, while having no effect on endothelial cells expressing almost exclusively the 55-kDa TNF-R. Elastase-treated PMN released a 32-kDa soluble fragment of p75 TNF-R that bound TNF and reacted with anti-TNF-R monoclonal antibodies. In contrast, fMet-Leu-Phe-activated PMN shed a 42-kDa fragment from p75 TNF-R, along with similar amounts of a 28-kDa fragment from p55 TNF-R. Shedding of both TNF-Rs by intact activated PMN was more extensive than shedding caused by elastase and was completely resistant to DFP and MSAAPV-CK. Thus, the TNF-R-releasing activity of azurophil granules is distinct from that operative in intact stimulated PMN and could provide an additional mechanism for the control of cellular responses to TNF at sites of inflammation.  相似文献   

11.
Several members of the tumour necrosis factor receptor (TNF-R) superfamily can induce cell death. For TNF-R1, Fas/APO-1, DR3, DR6, TRAIL-R1 and TRAIL-R2, a conserved 'death domain' in the intracellular region couples these receptors to activation of caspases. However, it is not yet known how TNF receptor family members lacking a death domain, such as TNF-R2, CD40, LT-betaR, CD27 or CD30, execute their death-inducing capability. Here we demonstrate in different cellular systems that cytotoxic effects induced by TNF-R2, CD40 and CD30 are mediated by endogenous production of TNF and autotropic or paratropic activation of TNF-R1. In addition, stimulation of TNF-R2 and CD40 synergistically enhances TNF-R1-induced cytotoxicity. These findings describe a novel pro-apoptotic mechanism induced by some members of the TNF-R family.  相似文献   

12.
Localized tumor necrosis factor-alpha (TNFalpha) elevation has diverse effects in brain injury often attributed to signaling via TNFp55 or TNFp75 receptors. Both dentate granule cells and CA pyramidal cells express TNF receptors (TNFR) at low levels in a punctate pattern. Using a model to induce selective death of dentate granule cells (trimethyltin; 2 mg/kg, i.p.), neuronal apoptosis [terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ end labeling, active caspase 3 (AC3)] was accompanied by amoeboid microglia and elevated TNFalpha mRNA levels. TNFp55R (55 kDa type-1 TNFR) and TNFp75R (75 kDa type-2 TNFR) immunoreactivity in AC3(+) neurons displayed a pattern suggestive of receptor internalization and a temporal sequence of expression of TNFp55R followed by TNFp75R associated with the progression of apoptosis. A distinct ramified microglia response occurred around CA1 neurons and healthy dentate neurons that displayed an increase in the normal punctate pattern of TNFRs. Neuronal damage was decreased with i.c.v. injection of TNFalpha antibody and in TNFp55R-/-p75R-/- mice that showed higher constitutive mRNA levels for interleukin (IL-1alpha), macrophage inflammatory protein 1-alpha (MIP-1alpha), TNFalpha, transforming growth factor beta1, Fas, and TNFRSF6-assoicated via death domain (FADD). TNFp75R-/- mice showed exacerbated injury and elevated mRNA levels for IL-1alpha, MIP-1alpha, and TNFalpha. In TNFp55R-/- mice, constitutive mRNA levels for TNFalpha, IL-6, caspase 8, FADD, and Fas-associated phosphatase were higher; IL-1alpha, MIP-1alpha, and transforming growth factor beta1 lower. The mice displayed exacerbated neuronal death, delayed microglia response, increased FADD and TNFp75R mRNA levels, and co-expression of TNFp75R in AC3(+) neurons. The data demonstrate TNFR-mediated apoptotic death of dentate granule neurons utilizing both TNFRs and suggest a TNFp75R-mediated apoptosis in the absence of normal TNFp55R activity.  相似文献   

13.
The receptors for tumor necrosis factor alpha (TNF alpha) were analyzed on myeloid cells (HL60, U937, K562, and freshly isolated blood monocytes) and on cells of epithelial origin (MCF7, HEp2 and HeLa cells), by use of radiolabeled TNF alpha and cross-linking experiments. Both cell types had high but slightly different affinities for TNF alpha. The myeloid cells had major cross-linked products of 98-100 kDa, which were similar in their N-linked glycosylation, whereas the cells of epithelial origin contained a major cross-linked product of 75 kDa, a second product of 95 kDa. The major receptors of both cell types (studied mostly with HL60 and HEp2 cells) are different proteins because (a) their apparent molecular masses were different and no evidence was obtained for cell-specific proteases, which could generate the differently sized receptors from one common receptor molecule; (b) anti-receptor antibodies, which precipitated the 95- and 75-kDa products, did not precipitate the 100-kDa cross-linked complex; (c) the native TNF alpha-receptor complexes had different proteolytic fingerprints; (d) the tryptic fragments differed in their association with the cell membrane vesicles; (e) the receptors differed in their degree of N-linked glycosylation; and (f) O-linked glycosylation was found on the major receptor of HL60 but not of HEp2 cells. In addition, myeloid cells may also contain a small amount of the HEp2-type of TNF alpha receptor. We suggest that at least two different receptors for TNF alpha exist.  相似文献   

14.
Binding of tumor necrosis factor-alpha (TNFalpha) to its receptor, TNF-R1, results in the activation of inhibitor of kappaB kinase (IKK) and c-Jun N-terminal kinase (JNK) pathways that are coordinately regulated and important in survival and death. We demonstrated previously that in response to hydrogen peroxide (H2O2), the ability of TNFalpha to activate IKK in mouse lung epithelial cells (C10) was inhibited and that H2O2 alone was sufficient to activate JNK and induce cell death. In the current study, we investigated the involvement of TNF-R1 in H2O2-induced JNK activation. In lung fibroblasts from TNF-R1-deficient mice the ability of H2O2 to activate JNK was inhibited compared with fibroblasts from control mice. Additionally, in C10 cells expressing a mutant form of TNF-R1, H2O2-induced JNK activation was also inhibited. Immunoprecipitation of TNF-R1 revealed that in response to H2O2, the adapter proteins, TRADD and TRAF2, and JNK were recruited to the receptor. However, expression of the adaptor protein RIP, which is essential for IKK activation by TNFalpha, was decreased in cells exposed to H2O2, and its chaperone Hsp90 was cleaved. Furthermore, data demonstrating that expression of TRAF2 was not affected by H2O2 and that overexpression of TRAF2 was sufficient to activate JNK provide an explanation for the inability of H2O2 to activate IKK and for the selective activation of JNK by H2O2. Our data demonstrate that oxidative stress interferes with IKK activation while promoting JNK signaling, creating a signaling imbalance that may favor apoptosis.  相似文献   

15.
Thrombospondin-1 (TSP-1) treatment of dermal microvascular endothelial cells (MvEC) has been shown to upregulate Fas ligand (FasL) and to induce apoptosis by a mechanism that requires caspase-8 activity. We have examined the potential anti-angiogenic effects of TSP-1 on primary human brain MvEC. The addition of TSP-1 to primary human brain MvEC cultured as monolayers on type 1 collagen, induced cell death and apoptosis (evidenced by caspase-3 cleavage) in a dose- (5-30 nM) and time-dependent (maximal at 17 h) manner. TSP-1 treatment for 17 h induced caspase-3 cleavage that required caspase-8 activity and the tumor necrosis factor receptor 1 (TNF-R1). We did not find a requirement for Fas, or the tumor necrosis-related apoptosis-inducing ligand receptors (TRAIL-R) 1 and 2. We confirmed the findings using caspase inhibitors, blocking antibodies and small interfering RNA (siRNA). Further analysis indicated that the TSP-1 induction of caspase-3 cleavage of primary human brain MvEC adherent to collagen required the synthesis of new message and protein, and that TSP-1 induced the expression of TNFalpha mRNA and protein. Consistent with these findings, when the primary human brain MvEC were propagated on collagen gels mAb anti-TNF-R1 reversed the inhibitory effect, in part, of TSP-1 on tube formation and branching. These data identify a novel mechanism whereby TSP-1 can inhibit angiogenesis-through induction of apoptosis in a process mediated by TNF-R1.  相似文献   

16.
17.
Endothelial monocyte-activating polypeptide-II (EMAP-II), a proinflammatory cytokine with antiangiogenic properties, renders tumours sensitive to tumour necrosis factor-alpha (TNF) treatment. The exact mechanisms for this effect remain unclear. Here we show that human endothelial cells (EC) are insensitive to TNF-induced apoptosis but after a short pre-treatment with EMAP-II, EC quickly undergo TNF-induced apoptosis. We further analysed this EMAP-II pre-treatment effect and found no increase of TNF-R1 protein expression but rather an induction of TNF-R1 redistribution from Golgi storage pools to cell membranes. In addition, we observed EMAP-II induced mobilization and membrane expression of the TNF-R1-Associated Death Domain (TRADD) protein. Immunofluorescence co-staining experiments revealed that these two effects occurred at the same time in the same cell but TNF-R1 and TRADD were localized in different vesicles. These findings suggest that EMAP-II sensitises EC to apoptosis by facilitating TNF-R1 apoptotic signalling via TRADD mobilization and introduce a molecular and antiangiogenic explanation for the TNF sensitising properties of EMAP-II in tumours.  相似文献   

18.
Immunohistochemical and in vitro studies indicate that caveolin-1, which occurs abundantly in alveolar epithelial type I cells and microvascular endothelial cells of the lung, is selectively downregulated in the alveolar epithelium following exposure to bleomycin. Bleomycin is also known to enhance the expression levels of metalloproteinases and of the metalloproteinase inducer CD147/EMMPRIN in lung cells. Experimental in vitro data has showed that MMP-inducing activity of CD147 is under the control of caveolin-1. We studied the effects of bleomycin on the expression of caveolin-1, CD147 and metalloproteinases using an alveolar epithelial rat cell line R3/1 with properties of both alveolar type I and type II cells and explanted rat lung slices. In parallel, retrospective samples of bleomycin-induced fibrosis in rats and mice as well as samples of wild type and caveolin-1 knockout animals were included for immunohistochemical comparison with in vitro data. Here we report that treatment with bleomycin downregulates caveolin-1 and increases CD147 and MMP-2 and -9 expression/activity in R3/1 cells using RT-PCR, Western blot analysis, MMP-2 activity assay and immunocytochemistry. Immunofluorescence double labeling revealed that caveolin-1 and CD147 were not colocalized in vitro. The in vitro findings were confirmed through immunohistochemical studies of the proteins in paraffin embedded precision-cut rat lung slices and in fibrotic rat lung tissues. The caveolin-1-negative hyperplastic ATII cells exhibited enhanced immunoreactivity for CD147 and MMP-2. Caveolin-1-negative ATI cells of fibrotic samples were mostly CD147 negative. There were no differences in the pulmonary expression of CD147 between the normal and caveolin-1 deficient animals. The results demonstrate that bleomycin-induced lung injury is associated with an increase in CD147 expression and MMP activity, particularly in alveolar epithelial cells. In addition, our data exclude any functional interaction between CD147 and alveolar epithelial caveolin-1.  相似文献   

19.
The expression of the genes coding TNFalpha and TNF RII receptors (TNF RII: TNFR2 membrane and soluble domain, TNFR2/R7 soluble domain) was analysed in colon cancer at the II and III stage of disease, by estimation of mRNA expression. The study included 80 patients with histopathologically confirmed adenocarcinoma. The number of TNFalpha mRNA, TNFR2 mRNA and TNFR2/R7 mRNA copies were estimated in tumour and healthy tissue. The highest number of mRNA TNF-alpha copies were investigated in all samples of tissue and independently of the stage of disease. Simultaneously, we noticed the largest number of mRNA copies for TNFalpha and TNF R2/R7 in healthy cells at stage III of the disease. It is possible to draw a hypothetical line separating the anti-cancer activity of TNFalpha and its influence on cancer progression.  相似文献   

20.
Although c-Jun NH(2)-terminal kinase (JNK) has been implicated in the pathogenesis of transplantation-induced ischemia/reperfusion (I/R) injury in various organs, its significance in lung transplantation has not been conclusively elucidated. We therefore attempted to measure the transitional changes in JNK and AP-1 activities in I/R-injured lungs. Subsequently, we assessed the effects of JNK inhibition by the three agents including SP600125 on the degree of lung injury assessed by means of various biological markers in bronchoalveolar lavage fluid and histological examination including detection of apoptosis. In addition, we evaluated the changes in p38, extracellular signal-regulated kinase, and NF-kappaB-DNA binding activity. I/R injury was established in the isolated rat lung preserved in modified Euro-Collins solution at 4 degrees C for 4 h followed by reperfusion at 37 degrees C for 3 h. We found that AP-1 was transiently activated during ischemia but showed sustained activation during reperfusion, leading to significant lung injury and apoptosis. The change in AP-1 was generally in parallel with that of JNK, which was activated in epithelial cells (bronchial and alveolar), alveolar macrophages, and smooth muscle cells (bronchial and vascular) on immunohistochemical examination. The change in NF-kappaB qualitatively differed from that of AP-1. Protein leakage, release of lactate dehydrogenase and TNF-alpha into bronchoalveolar lavage fluid, and lung injury were improved, and apoptosis was suppressed by JNK inhibition. In conclusion, JNK plays a pivotal role in mediating lung injury caused by I/R. Therefore, inhibition of JNK activity has potential as an effective therapeutic strategy for preventing I/R injury during lung transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号