首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
Seed germination plays a pivotal role during the life cycle of plants. As dry seeds imbibe water, the resumption of energy metabolism and cellular repair occur and miRNA-mediated gene expression regulation is involved in the reactivation events. This research was aimed at understanding the role of miRNA in the molecular control during seed imbibition process. Small RNA libraries constructed from dry and imbibed maize seed embryos were sequenced using the Illumina platform. Twenty-four conserved miRNA families were identified in both libraries. Sixteen of them showed significant expression differences between dry and imbibed seeds. Twelve miRNA families, miR156, miR159, miR164, miR166, miR167, miR168, miR169, miR172, miR319, miR393, miR394 and miR397, were significantly down-regulated; while four families, miR398, miR408, miR528 and miR529, were significantly up-regulated in imbibed seeds compared to that in dry seeds. Furthermore, putative novel maize miRNAs and their target genes were predicted. Target gene GO analysis was performed for novel miRNAs that were sequenced more than 50 times in the normalized libraries. The result showed that carbohydrate catabolic related genes were specifically enriched in the dry seed, while in imbibed seed target gene enrichment covered a broad range of functional categories including genes in amino acid biosynthesis, isomerase activity, ligase activity and others. The sequencing results were partially validated by quantitative RT-PCR for both conserved and novel miRNAs and the predicted target genes. Our data suggested that diverse and complex miRNAs are involved in the seed imbibition process. That miRNA are involved in plant hormone regulation may play important roles during the dry-imbibed seed transition.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
MicroRNA genes (miRNAs) encoding small non-coding RNAs are abundant in plant genomes and play a key role in regulating several biological mechanisms. Five conserved miRNAs, miR156, miR168-1, miR168-2, miR164, and miR166 were selected for analysis from the 21 known plant miRNA families that were recovered from deep sequencing data of small RNA libraries of pumpkin and squash. A total of six novel miRNAs that were not reported before were found to have precursors with reliable fold-back structures and hence considered novel and were designated as cuc_nov_miRNAs. A set of five conserved, six novel miRNAs, and five uncharacterized small RNAs from the deep sequencing data were profiled for their dynamic regulation using qPCR. The miRNAs were evaluated for differential regulation across the tissues among four diverse cucurbit species, including pumpkin and squash (Cucurbita moschata Duch. Ex Poir. and Cucurbita pepo L.), bitter melon (Momordica charantia L.), and Luffa (Loofah) (Luffa acutangula Roxb.). Expression analysis revealed differential regulation of various miRNAs in leaf, stem, and fruit tissues. Importantly, differences in the expression levels were also found in the leaves and fruits of closely related C. moschata and C. pepo. Comparative miRNA profiling and expression analysis in four cucurbits led to identification of conserved miRNAs in cucurbits. Predicted targets for two of the conserved miRNAs suggested miRNAs are involved in regulating similar biological mechanisms in various species of cucurbits.  相似文献   

12.
13.
Plant root architecture is regulated by the initiation and modulation of cell division in regions containing pluripotent stem cells known as meristems. In roots, meristems are formed early in embryogenesis, in the case of the root apical meristem (RAM), and during organogenesis at the site of lateral root or, in legumes, nodule formation. Root meristems can also be generated in vitro from leaf explants cultures supplemented with auxin. microRNAs (miRNAs) have emerged as regulators of many key biological functions in plants including root development. To identify key miRNAs involved in root meristem formation in Medicago truncatula, we used deep sequencing to compare miRNA populations. Comparisons were made between: (1) the root tip (RT), containing the RAM and the elongation zone (EZ) tissue and (2) root forming callus (RFC) and non-root forming callus (NRFC). We identified 83 previously reported miRNAs, 24 new to M. truncatula, in 44 families. For the first time in M. truncatula, members of conserved miRNA families miR165, miR181 and miR397 were found. Bioinformatic analysis identified 38 potential novel miRNAs. Selected miRNAs and targets were validated using Taqman miRNA assays and 5′ RACE. Many miRNAs were differentially expressed between tissues, particularly RFC and NRFC. Target prediction revealed a number of miRNAs to target genes previously shown to be differentially expressed between RT and EZ or RFC and NRFC and important in root development. Additionally, we predict the miRNA/target relationships for miR397 and miR160 to be conserved in M. truncatula. Amongst the predictions, were AUXIN RESPONSE FACTOR 10, targeted by miR160 and a LACCASE-like gene, targeted by miR397, both are miRNA/target pairings conserved in other species.  相似文献   

14.
15.
MicroRNAs (miRNAs) have recently emerged as important regulators of gene expression in plants. Many miRNA families and their targets have been extensively studied in model species and major crops. We have characterized mature miRNAs along with their precursors and potential targets in Hypericum to generate a comprehensive list of conserved miRNA families and to investigate the regulatory role of selected miRNAs in biological processes that occur in the flower. St. John’s wort (Hypericum perforatum L., 2n = 4x = 32), a medicinal plant that produces pharmaceutically important metabolites with therapeutic activities, was chosen because it is regarded as an attractive model system for the study of apomixis. A computational in silico prediction of structure, in combination with an in vitro validation, allowed us to identify 7 pre-miRNAs, including miR156, miR166, miR390, miR394, miR396, and miR414. We demonstrated that H. perforatum flowers share highly conserved miRNAs and that these miRNAs potentially target dozens of genes with a wide range of molecular functions, including metabolism, response to stress, flower development, and plant reproduction. Our analysis paves the way toward identifying flower-specific miRNAs that may differentiate the sexual and apomictic reproductive pathways.  相似文献   

16.
Pleural malignant mesothelioma (MPM) is a detrimental neoplasm affecting pleural sheets and determining a high rate of mortality. In this study, we have enrolled 14 consecutive patients (13 males and 1 female) with MPM (mean age: 70.3 ± 4.6 years). We have collected serum for the determination of a miRNA profiling using a low-density microarray real time PCR system in the serum of patients and comparing it with that one of 10 control counterparts affected by not-cancer-related pleural effusions. In the patients 5 miRNAs were up-regulated (miR101, miR25, miR26b, miR335 and miR433), 2 miRNA were downregulated (miR191, miR223) and two miRNAs were expressed exclusively in patients (miR29a and miR516). Based upon the changes in the expression of the above mentioned miRNAs we detected two distinctive miRNA signatures predicting histotype and survival in these patients: I) patients with more than 3/9 upregulated miRNAs or 3/9 upregulated miRNAs and miR516 not recordable or unchanged (signature A); II) patients with at least 3/9 downregulated or unchanged miRNAs and/or miR29a downregulated (signature B). Based upon these criteria, 5 patients were stratified in signature A and the remaining 9 in signature B. Patients with signature A had a significant shorter median survival than those with signature B (7 months vs. 17 months, 95% CI: 0.098–1.72, p = 0.0021), had a sarcomatoid or mixed histological MPM subtype and were diagnosed in stage II (3/5) and stage III (2/5). In conclusion, we suggest that miRNA signature A is predictive of sarcomatoid histotype and of worse prognosis in MPM.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号