首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diffusion tensor imaging (DTI) studies of human brain development have consistently shown widespread, but nonlinear increases in white matter anisotropy through childhood, adolescence, and into adulthood. However, despite its sensitivity to changes in tissue microstructure, DTI lacks the specificity to disentangle distinct microstructural features of white and gray matter. Neurite orientation dispersion and density imaging (NODDI) is a recently proposed multi-compartment biophysical model of brain microstructure that can estimate non-collinear properties of white matter, such as neurite orientation dispersion index (ODI) and neurite density index (NDI). In this study, we apply NODDI to 66 healthy controls aged 7–63 years to investigate changes of ODI and NDI with brain maturation, with comparison to standard DTI metrics. Using both region-of-interest and voxel-wise analyses, we find that NDI exhibits striking increases over the studied age range following a logarithmic growth pattern, while ODI rises following an exponential growth pattern. This novel finding is consistent with well-established age-related changes of FA over the lifespan that show growth during childhood and adolescence, plateau during early adulthood, and accelerating decay after the fourth decade of life. Our results suggest that the rise of FA during the first two decades of life is dominated by increasing NDI, while the fall in FA after the fourth decade is driven by the exponential rise of ODI that overcomes the slower increases of NDI. Using partial least squares regression, we further demonstrate that NODDI better predicts chronological age than DTI. Finally, we show excellent test—retest reliability of NODDI metrics, with coefficients of variation below 5% in all measured regions of interest. Our results support the conclusion that NODDI reveals biologically specific characteristics of brain development that are more closely linked to the microstructural features of white matter than are the empirical metrics provided by DTI.  相似文献   

2.
PurposeNODDI (Neurite Orientation Dispersion and Density Imaging) and DTI (Diffusion tensor imaging) may be useful in identifying abnormal regions in patients with MRI-negative refractory epilepsy. The aim of this study was to determine whether NODDI and DTI maps including neurite density (ND), orientation dispersion index (ODI), mean diffusivity (MD) and fractional anisotropy (FA) can detect structural abnormalities in cortical and subcortical gray matter (GM) in these patients. The correlation between these parameters and clinical characteristics of the disease was also investigated.MethodsNODDI and DTI maps of 17 patients were obtained and checked visually. Region of interest (ROI) was drawn on suspected areas and contralateral regions in cortex. Contrast-to-noise ratio (CNR) was determined for each region. Furthermore volumetric data and mean values of ND, ODI, FA and MD of subcortical GM structures were calculated in both of the patients and controls. Finally, the correlations of these parameters in the subcortical with age of onset and duration of epilepsy were investigated.ResultsCortical abnormalities on ODI images were observed in eight patients qualitatively. CNR of ODI was significantly greater than FA and MD. The subcortical changes including decrease of FA and ND and increase of ODI in left nucleus accumbens and increase of the volume in right amygdala were detected in the patients.ConclusionsThe results revealed that NODDI can improve detection of microstructural changes in cortical and subcortical GM in patients with MRI negative epilepsy.  相似文献   

3.
Modern diffusion MR protocols allow one to acquire the multi-shell diffusion data with high diffusion weightings in a clinically feasible time. In the present work we assessed three diffusion approaches based on diffusion and kurtosis tensor imaging (DTI, DKI), and neurite orientation dispersion and density imaging (NODDI) as possible biomarkers for human brain glioma grade differentiation based on the one diffusion protocol. We used three diffusion weightings (so called b-values) equal to 0, 1000, and 2500 s/mm2 with 60 non-coplanar diffusion directions in the case of non-zero b-values. The patient groups of the glioma grades II, III, and IV consist of 8 subjects per group. We found that DKI, and NODDI scalar metrics can be effectively used as glioma grade biomarkers with a significant difference (p < 0.05) for grading between low- and high-grade gliomas, in particular, for glioma II versus glioma III grades, and glioma III versus glioma IV grades. The use of mean/axial kurtosis and intra-axonal fraction/orientation dispersion index metrics allowed us to obtain the most feasible and reliable differentiation criteria. For example, in the case of glioma grades II, III, and IV the mean kurtosis is equal to 0.31, 0.51, and 0.90, and the orientation dispersion index is equal to 0.14, 0.30, and 0.59, respectively. The limitations and perspectives of the biophysical diffusion models based on intra-/extra-axonal compartmentalisation for glioma differentiation are discussed.  相似文献   

4.
Diffusion Magnetic Resonance Imaging provides images of unquestionable diagnostic value. It is commonly used in the assessment of stroke and in white matter fiber tracking, among other applications. The diffusion coefficient has been shown to depend on cell concentration, membrane permeability, and cell orientation in the case of white matter or muscle fiber tracking; yet a clear relation between diffusion measurements and known physiological parameters is not established. The aim of this paper is to review hypotheses and actual knowledge on diffusion signal origin to provide assistance in the interpretation of diffusion MR images. Focus will be set on brain images, as most common applications of diffusion MRI are found in neuroradiology. Diffusion signal does not come from two intra- or extracellular compartments, as was first assumed. Restriction of water displacement due to membranes, hindrance in the extracellular space, and tissue heterogeneity are important factors. Unanswered questions remain on how to deal with tissue heterogeneity, and how to retrieve parameters less troublesome to work with from biological and clinical points of view. Diffusion quantification should be done with care, as many variables can lead to variation in measurements.  相似文献   

5.
几种景观分离程度评价指标的探讨   总被引:10,自引:3,他引:7  
1 引  言景观分离程度是指同一景观类型斑块分布的离散程度 .正确评价景观分离程度对于理解景观格局的形成机制、全面认识景观格局的特点是十分重要的 .因此 ,几乎所有景观格局研究都需要计算景观分离程度指标 .景观分离度[1] 、最小距离指数[5] 、类斑散度[9] 是 3种比较重要的景观分离程度指标 .本文通过一个流域景观的研究 ,对以上指标进行了计算和比较 ,发现这些指标所反映的离散程度各有侧重 .因此提出了一个综合性更好一些的指标———平均距离指数 .2 计算方法  陈利顶等[1] 计算景观分离度的公式是 :  Fi=Di/Si (1)式…  相似文献   

6.
The number of nucleotide substitutions accumulated in a gene or in a lineage is an important random variable in the study of molecular evolution. Of particular interest is the ratio of the variance to the mean of that random variable, often known as the dispersion index. Because nucleotide substitution is most commonly modeled by a continuous-time four-state Markov chain, this paper provides a systematic method of computing the dispersion indices exhibited by a continuous-time four-state Markov chain. Using this method along with computer algebra and Monte Carlo simulation, this paper offers partially proven conjectures that were supported by thorough computer experiments. It is believed that the Tamura model, the equal-input model and the Takahata-Kimura model always exhibit dispersion indices less than 2. It is also believed that a general four-state model can be chosen to exhibit a dispersion index of any desired magnitude, although the chance of a randomly chosen such model exhibiting a dispersion index greater than 2 is as small as about 2%. Relevance of these findings to the neutral theory is discussed.  相似文献   

7.
Neurons possess a complex morphology spanning long distances and a large number of subcellular specializations such as presynaptic terminals and dendritic spines. This structural complexity is essential for maintenance of synaptic junctions and associated electrical as well as biochemical signaling events. Given the structural and functional complexity of neurons, neuronal endoplasmic reticulum is emerging as a key regulator of neuronal function, in particular synaptic signaling. Neuronal endoplasmic reticulum mediates calcium signaling, calcium and lipid homeostasis, vesicular trafficking, and proteostasis events that underlie autonomous functions of numerous subcellular compartments. However, based on its geometric complexity spanning the whole neuron, endoplasmic reticulum also integrates the activity of these autonomous compartments across the neuron and coordinates their interactions with the soma. In this article, we review recent work regarding neuronal endoplasmic reticulum function and its relationship to neurotransmission and plasticity.  相似文献   

8.
Structural constitutive models integrate information on tissue composition and structure, avoiding ambiguities in material characterization. However, critical structural information (such as fiber orientation) must be modeled using assumed statistical distributions, with the distribution parameters estimated from fits to the mechanical test data. Thus, full realization of structural approaches continues to be limited without direct quantitative structural information for direct implementation or to validate model predictions. In the present study, fiber orientation information obtained using small angle light scattering (SALS) was directly incorporated into a structural constitutive model based on work by Lanir (J. Biomech., v. 16, pp. 1-12, 1983). Demonstration of the model was performed using existing biaxial mechanical and fiber orientation data for native bovine pericardium (Sacks and Chuong, ABME, v.26, pp. 892-902, 1998). The structural constitutive model accurately predicted the complete measured biaxial mechanical response. An important aspect of this approach is that only a single equibiaxial test to determine the effective fiber stress-strain response and the SALS-derived fiber orientation distribution were required to determine the complete planar biaxial mechanical response. Changes in collagen fiber crimp under equibiaxial strain suggest that, at the meso-scale, fiber deformations follow the global tissue strains. This result supports the assumption of affine strain to estimate the fiber strains. However, future evaluations will have to be performed for tissue subjected to a wider range of strain to more fully validate the current approach.  相似文献   

9.
Efficient neuronal function depends on the continued modulation of the local neuronal proteome. Local protein synthesis plays a central role in tuning the neuronal proteome at specific neuronal regions. Various aspects of translation such as the localization of translational machinery, spatial spread of the newly translated proteins, and their site of action are carried out in specialized neuronal subcompartments to result in a localized functional outcome. In this review, we focus on the various aspects of these local translation compartments such as size, biochemical and organelle composition, structural boundaries, and temporal dynamics. We also discuss the apparent absence of definitive components of translation in these local compartments and the emerging state‐of‐the‐art tools that could help dissecting these conundrums in greater detail in the future.  相似文献   

10.
The ability to evaluate fracture risk at an early time point is essential for improved prognostics as well as enhanced treatment in cases of bone loss such as from osteoporosis. Improving the diagnostic ability is inherent upon both high-resolution non-invasive imaging, and a thorough understanding of how the derived indices of structure and density relate to its true mechanical behavior. Using sheep femoral trabecular bone with a range of strength, the interrelationship of mechanical and microstructural parameters was analyzed using multi-directional mechanical testing and micro-computed tomography. Forty-five cubic trabecular bone samples were harvested from 23 adult female sheep, some of whom had received hind-limb vibratory stimuli over the course of 2 years with consequently enhanced mechanical properties. These samples were pooled into a low, medium, or high strength group for further analysis. The findings show that microCT indices that are structural in nature, e.g., structural model index (SMI) (r2=0.85, p<0.0001) is as good as more density oriented indices like bone volume/total volume (BV/TV) (r2=0.81, p<0.0001) in predicting the ultimate strength of a region of trabecular bone. Additionally, those indices more related to global changes in trabecular structure such as connectivity density (ConnD) or degree of anisotropy (DA) are less able to predict the mechanical properties of bone. Interrelationships of trabecular indices such as trabecular number (TbN), thickness (TbTh), and spacing (TbSp) provide clues as to how the trabecular bone will remodel to ultimately achieve differences in the apparent mechanical properties. For instance, the analysis showed that a loss of bone primarily affects the connectedness and overall number of trabeculae, while increased strength results in an increase of the overall thickness of trabeculae while not improving the connectedness. Certainly, the microCT indices studied are able to predict the bulk mechanical properties of a trabecular ROI well, leaving unaccounted only about 15-20% of its inherent variability. Diagnostically, this implies that future work on the early prediction of fracture risk should continue to explore the role of bone quality as the key factors or as an adjuvant to bone quantity (e.g., apparent density).  相似文献   

11.
Biochemical processes in synapses and other neuronal compartments underlie neuroplasticity (functional and structural alterations in the brain enabling adaptation to the environment, learning, memory, as well as rehabilitation after brain injury). This basic molecular level of brain plasticity covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating in many coordinated and interacting signal and metabolic processes, their modulation forming a molecular basis for brain plasticity. The articles in this issue are focused on different “hot points” in the research area of biochemical mechanisms supporting neuroplasticity.  相似文献   

12.
Measuring the extent to which a species is specialized is a major challenge in ecology, with important repercussions for fundamental research as well as for applied ecology and conservation. Here, we develop a multidimensional index of specialization based on five sets of ecological characteristics of breeding bird species. We used two recent databases of species traits of European birds based on foraging ecology, habitat, and breeding characteristics. The indices of specialization were calculated by applying the Gini coefficient, an index of inequality. The Gini coefficient is a measure of statistical dispersion on a scale between 0 and 1, reflecting a gradient from low to high specialization, respectively. Finally, we tested the strength of the phylogenetic signal of each specialization index to understand how the variance of such indices is shared throughout the phylogeny. The methods for constructing and evaluating a multidimensional index of bird specialization could also be applied to other taxa and regions, offering a simple but useful tool, particularly suited for global or biogeographic studies, as a contribution to comparative estimates of the degree of specialization of species.  相似文献   

13.
Microglia are a subset of tissue-macrophages that are ubiquitously distributed throughout the entire CNS. In health, they remain largely dormant until activated by a pathological stimulus. The availability of more sensitive detection techniques has allowed the early measurement of the cell responses of microglia in areas with few signs of active pathology. Subtle neuronal injury can induce microglial activation in retrograde and anterograde projection areas remote from the primary lesion focus. There is also evidence that in cases of long-standing abnormal neuronal activity, such as in patients after limb amputation with chronic pain and phantom sensations, glial activation may occur transsynaptically in the thalamus. Such neuronally driven glial responses may be related to the emergence central sensitisation in chronic pain states or plasticity phenomena in the cerebral cortex. It is suggested, that such persistent low-level microglial activation is not adequately described by the traditional concept of phagocyte-mediated tissue damage that largely evolved from studies of acute brain lesion models or acute human brain pathology. Due to the presence of signal molecules that can act on neurons and microglia alike, the communication between neurons and microglia is likely to be bi-directional. Persistent subtle microglial activity may modulate basal synaptic transmission and thus neuronal functioning either directly or through the interaction with astrocytes. The activation of microglia leads to the emergence of microstructural as well as functional compartments in which neurokines, interleukins and other signalling molecules introduce a qualitatively different, more open mode of cell-cell communication that is normally absent from the healthy adult brain. This 'neo-compartmentalisation', however, occurs along predictable neuronal pathways within which these glial changes are themselves under the modulatory influence of neurons or other glial cells and are subject to the evolving state of the pathology. Depending on the disease state, yet relatively independent of the specific disease cause, fluctuations in the modulatory influence by non-neuronal cells may form the cellular basis for the variability of brain plasticity phenomena, i.e. the plasticity of plasticity.  相似文献   

14.
A new constitutive model for elastic, proximal pulmonary artery tissue is presented here, called the total crimped fiber model. This model is based on the material and microstructural properties of the two main, passive, load-bearing components of the artery wall, elastin, and collagen. Elastin matrix proteins are modeled with an orthotropic neo-Hookean material. High stretch behavior is governed by an orthotropic crimped fiber material modeled as a planar sinusoidal linear elastic beam, which represents collagen fiber deformations. Collagen-dependent artery orthotropy is defined by a structure tensor representing the effective orientation distribution of collagen fiber bundles. Therefore, every parameter of the total crimped fiber model is correlated with either a physiologic structure or geometry or is a mechanically measured material property of the composite tissue. Further, by incorporating elastin orthotropy, this model better represents the mechanics of arterial tissue deformation. These advancements result in a microstructural total crimped fiber model of pulmonary artery tissue mechanics, which demonstrates good quality of fit and flexibility for modeling varied mechanical behaviors encountered in disease states.  相似文献   

15.
Ligament mechanical behavior is primarily regulated by fibrous networks of type I collagen. Although these fibrous networks are typically highly aligned, healthy and injured ligament can also exhibit disorganized collagen architecture. The objective of this study was to determine whether variations in the collagen fibril network between neighboring ligaments can predict observed differences in mechanical behavior. Ligament specimens from two regions of bovine fetlock joints, which either exhibited highly aligned or disorganized collagen fibril networks, were mechanically tested in uniaxial tension. Confocal microscopy and FiberFit software were used to quantify the collagen fibril dispersion and mean fibril orientation in the mechanically tested specimens. These two structural parameters served as inputs into an established hyperelastic constitutive model that accounts for a continuous distribution of planar fibril orientations. The ability of the model to predict differences in the mechanical behavior between neighboring ligaments was tested by (1) curve fitting the model parameters to the stress response of the ligament with highly aligned fibrils and then (2) using this model to predict the stress response of the ligament with disorganized fibrils by only changing the parameter values for fibril dispersion and mean fibril orientation. This study found that when using parameter values for fibril dispersion and mean fibril orientation based on confocal imaging data, the model strongly predicted the average stress response of ligaments with disorganized fibrils (\(R^{2}=0.97\)); however, the model only successfully predicted the individual stress response of ligaments with disorganized fibrils in half the specimens tested. Model predictions became worse when parameters for fibril dispersion and mean fibril orientation were not based on confocal imaging data. These findings emphasize the importance of collagen fibril alignment in ligament mechanics and help advance a mechanistic understanding of fibrillar networks in healthy and injured ligament.  相似文献   

16.
The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.  相似文献   

17.
The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.  相似文献   

18.
A physical theory explaining the anisotropic dispersion of water and solutes in biological tissues is introduced based on the phenomena of Taylor dispersion, in which highly diffusive solutes cycle between flowing and stagnant regions in the tissue, enhancing dispersion in the direction of microvascular flow. An effective diffusion equation is derived, for which the coefficient of dispersion in the axial direction (direction of capillary orientation) depends on the molecular diffusion coefficient, tissue perfusion, and vessel density. This analysis provides a homogenization that represents three-dimensional transport in capillary beds as an effectively one-dimensional phenomenon. The derived dispersion equation may be used to simulate the transport of solutes in tissues, such as in pharmacokinetic modeling. In addition, the analysis provides a physically based hypothesis for explaining dispersion anisotropy observed in diffusion-weighted imaging (DWI) and diffusion-tensor magnetic resonance imaging (DTMRI) and suggests the means of obtaining quantitative functional information on capillary vessel density from measurements of dispersion coefficients. It is shown that a failure to account for flow-mediated dispersion in vascular tissues may lead to misinterpretations of imaging data and significant overestimates of directional bias in molecular diffusivity in biological tissues. Measurement of the ratio of axial to transverse diffusivity may be combined with an independent measurement of perfusion to provide an estimate of capillary vessel density in the tissue.  相似文献   

19.
A kinetic analysis is made of the experimentally measured time course of respiratory uptake of the highly fat-soluble, inert gas cyclopropane by normal human subjects. The analysis is based on the well-known perfusion-limited model in which a number of body compartments are arranged in parallel with the lungs via the circulating blood. Three distinct body compartments are derived from the data. These are tentatively identified as: (a) adipose tissue (b) fat-poor tissue of low perfusion such as resting muscle, skin, and connective tissue (c) fat-poor tissue of high perfusion such as brain, heart, gut, liver, and kidney. Blood flow rates to the several compartments are also derived from the data. The rates to compartments (a) and (b) are each approximately 10 per cent of the estimated total cardiac output. The derived perfusion (blood flow rate/compartment weight) of the three compartments are in the range, respectively, (a) 2 to 4, (b) 1 to 2.5, (c) 25 to 75 ml/min/100 gm. Uncertainties arising from the experimental data and from simplifications of the model (neglect of lung fill-up phase of uptake and gross diffusion of cyclopropane from one tissue into another) are discussed. The present type of uptake experiment is significant for the problems of total body fat determination, of gross body composition in relation to weight change, of gross shunting of blood flow from one compartment to another, of anesthesia by fat-soluble substances, and of decompression sickness.  相似文献   

20.
Bone tissue is a complex multilevel composite which has the ability to sense ad respond to its mechanical environment. It is believed that bone cells called osteocytes within the bone matrix sense the mechanical environment and determine whether structural alterations are needed. At present it is not known, however, how loads are transferred from the whole bone level to cells. A computational procedure combining representative volume element (RVE) based homogenization theory with digital imaging is proposed to estimate strains at various levels of bone structure. Bone tissue structural organization and RVE based analysis are briefly reviewed. The digital image based computational procedure was applied to estimate strains in individual trabeculae (first-level microstructure). Homogenization analysis of an idealized model was used to estimate strains at one level of bone structure around osteocyte lacunae (second-level trabecular microstructure). The results showed that strain at one level of bone structure is amplified to a broad range at the next microstructural level. In one case, a zeor-level tensile principal strain of 495 muE engendered strains ranging between -1000 and 7000 muE in individual trabeculae (first-level microstructure). Subsequently, a first-level tensile principal strains of 1325 muE within an inidividual trabecula engendered strains ranging between 782 and 2530 muE around osteocyte lacunae. Lacunar orientation was found to influence strains around osteocyte lacunae much more than lacunar ellipticity. In conclusion, the computational procedure combining homogenization theory with digital imaging can proveide estimates of cell level strains within whole bones. Such results may be used to bridge experimental studies of bone adaptation at the whole bone and cell culture level. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号