首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
3.
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient pathogen and a major cause of death worldwide. Although various virulence factors of M. tuberculosis have been identified, its pathogenesis remains incompletely understood. TlyA is a virulence factor in several bacterial infections and is evolutionarily conserved in many Gram-positive bacteria, but its function in M. tuberculosis pathogenesis has not been elucidated. Here, we report that TlyA significantly contributes to the pathogenesis of M. tuberculosis. We show that a TlyA mutant M. tuberculosis strain induces increased IL-12 and reduced IL-1β and IL-10 cytokine responses, which sharply contrasts with the immune responses induced by wild type M. tuberculosis. Furthermore, compared with wild type M. tuberculosis, TlyA-deficient M. tuberculosis bacteria are more susceptible to autophagy in macrophages. Consequently, animals infected with the TlyA mutant M. tuberculosis organisms exhibited increased host-protective immune responses, reduced bacillary load, and increased survival compared with animals infected with wild type M. tuberculosis. Thus, M. tuberculosis employs TlyA as a host evasion factor, thereby contributing to its virulence.  相似文献   

4.
Mycobacterium tuberculosis has evolved various mechanisms by which the bacterium can maintain homeostasis under numerous environmental assaults generated by the host immune response. M. tuberculosis harbors enzymes involved in the oxidative stress response that aid in survival during the production of reactive oxygen species in activated macrophages. Previous studies have shown that a dye-decolorizing peroxidase (DyP) is encapsulated by a bacterial nanocompartment, encapsulin (Enc), whereby packaged DyP interacts with Enc via a unique C-terminal extension. M. tuberculosis also harbors an encapsulin homolog (CFP-29, Mt-Enc), within an operon with M. tuberculosis DyP (Mt-DyP), which contains a C-terminal extension. Together these observations suggest that Mt-DyP interacts with Mt-Enc. Furthermore, it has been suggested that DyPs may function as either a heme-dependent peroxidase or a deferrochelatase. Like Mt-DyP, M. tuberculosis iron storage ferritin protein, Mt-BfrB, and an M. tuberculosis protein involved in folate biosynthesis, 7,8-dihydroneopterin aldolase (Mt-FolB), have C-terminal tails that could also interact with Mt-Enc. For the first time, we show by co-purification and electron microscopy that mycobacteria via Mt-Enc can encapsulate Mt-DyP, Mt-BfrB, and Mt-FolB. Functional studies of free or encapsulated proteins demonstrate that they retain their enzymatic activity within the Mt-Enc nanocompartment. Mt-DyP, Mt-FolB, and Mt-BfrB all have antioxidant properties, suggesting that if these proteins are encapsulated by Mt-Enc, then this nanocage may play a role in the M. tuberculosis oxidative stress response. This report provides initial structural and biochemical clues regarding the molecular mechanisms that utilize compartmentalization by which the mycobacterial cell may aid in detoxification of the local environment to ensure long term survival.  相似文献   

5.
6.
Inorganic polyphosphate (polyP), a linear polymer of hundreds of phosphate residues linked by ATP-like phosphoanhydride bonds, is found in all organisms and performs a wide variety of functions. This study shows that polyP accumulation occurs in Mycobacterium tuberculosis upon exposure to various stress conditions. M. tuberculosis possesses a single homolog of ppk-1, and we have disrupted ppk-1 in the M. tuberculosis genome by allelic replacement. The mutant strain exhibited negligible levels of intracellular polyP, decreased expression of sigF and phoP, and reduced growth in the stationary phase and displayed a survival defect in response to nitrosative stress and in THP-1 macrophages compared to the wild-type strain. We report that reduction in polyP levels is associated with increased susceptibility of M. tuberculosis to certain TB drugs and impairs its ability to cause disease in guinea pigs. These results suggest that polyP contributes to persistence of M. tuberculosis in vitro and plays an important role in the physiology of bacteria residing within guinea pigs.  相似文献   

7.
Mycobacterium tuberculosis has the potential to escape various cellular defense mechanisms for its survival which include various oxidative stress responses, inhibition of phagosome-lysosomes fusion and alterations in cell death mechanisms of host macrophages that are crucial for its infectivity and dissemination. Diabetic patients are more susceptible to developing tuberculosis because of impairement of innate immunity and prevailing higher glucose levels. Our earlier observations have demonstrated alterations in the protein profile of M. tuberculosis exposed to concurrent high glucose and tuberculosis conditions suggesting a crosstalk between host and pathogen under high glucose conditions. Since high glucose environment plays crucial role in the interaction of mycobacterium with host macrophages which provide a niche for the survival of M. tuberculosis, it is important to understand various interactive mechanisms under such conditions. Initial phagocytosis and containment of M. tuberculosis by macrophages, mode of macrophage cell death, respiratory burst responses, Mycobacterium and lysosomal co-localization were studied in M. tuberculosis H37Rv infected cells in the presence of varied concentrations of glucose in order to mimic diabetes like conditions. It was observed that initial attachment, phagocytosis and later containment were less effective under high glucose conditions in comparison to normal glucose. Mycobacterium infected cells showed more necrosis than apoptosis as cell death mechanism during the course of infection under high glucose concentrations. Co-localization and respiratory burst assay also indicated evasion strategies adopted by M. tuberculosis under such conditions. This study by using THP1 macrophage model of tuberculosis and high glucose conditions showed immune evasion strategies adapted during co-pathogenesis of tuberculosis and diabetes.  相似文献   

8.
Current treatments for Mycobacterium tuberculosis infections require long and complicated regimens that can lead to patient non-compliance, increasing incidences of antibiotic-resistant strains, and lack of efficacy against latent stages of disease. Thus, new therapeutics are needed to improve tuberculosis standard of care. One strategy is to target protein homeostasis pathways by inhibiting molecular chaperones such as GroEL/ES (HSP60/10) chaperonin systems. M. tuberculosis has two GroEL homologs: GroEL1 is not essential but is important for cytokine-dependent granuloma formation, while GroEL2 is essential for survival and likely functions as the canonical housekeeping chaperonin for folding proteins. Another strategy is to target the protein tyrosine phosphatase B (PtpB) virulence factor that M. tuberculosis secretes into host cells to help evade immune responses. In the present study, we have identified a series of GroEL/ES inhibitors that inhibit M. tuberculosis growth in liquid culture and biochemical function of PtpB in vitro. With further optimization, such dual-targeting GroEL/ES and PtpB inhibitors could be effective against all stages of tuberculosis – actively replicating bacteria, bacteria evading host cell immune responses, and granuloma formation in latent disease – which would be a significant advance to augment current therapeutics that primarily target actively replicating bacteria.  相似文献   

9.
Mycobacterium tuberculosis is one of the most successful pathogens known, having infected more than a third of the global population. An important strategy for intracellular survival of pathogenic mycobacteria relies on their capacity to resist delivery to lysosomes, instead surviving within macrophage phagosomes. Several factors of both mycobacterial and host origin have been implicated in this process. However, whether or not this strategy is employed in vivo is not clear. Here we show that in vivo, following intravenous infection, M. tuberculosis and Mycobacterium bovis BCG initially survived by resisting lysosomal transfer. However, after prolonged infection the bacteria were transferred to lysosomes yet continued to proliferate. A M. bovis BCG mutant lacking protein kinase G (PknG), that cannot avoid lysosomal transfer and is readily cleared in vitro, was found to survive and proliferate in vivo. The ability to survive and proliferate in lysosomal organelles in vivo was found to be due to an altered host environment rather than changes in the inherent ability of the bacteria to arrest phagosome maturation. Thus, within an infected host, both M. tuberculosis and M. bovis BCG adapts to infection-specific host responses. These results are important to understand the pathology of tuberculosis and may have implications for the development of effective strategies to combat tuberculosis.  相似文献   

10.
Mycobacterium tuberculosis is a facultative intracellular pathogen, and the ability of this bacterium to survive and to grow inside macrophages is central to its virulence. Multiple strategies are employed by M. tuberculosis to ensure survival in macrophages, including secretion of several proteins, which are good candidates to be virulence factors, drug targets for disease intervention, and vaccine antigens. However, some M. tuberculosis secreted proteins do not appear to play any role in the growth or survival of the bacterium in its mammalian host. Among these proteins are three putative cellulose-targeting proteins encoded by the genes Rv0062, Rv1090, and Rv1987. It has been previously shown that Rv0062 encodes an active cellulase. Here we report that Rv1090 and Rv1987 also encode functional proteins. Rv1090 is able to hydrolyze barley β-glucan while Rv1987 displays cellulose-binding activity on filter paper and on microcrystalline cellulose (Avicel). Collectively, these observations point toward a unique unknown relationship between M. tuberculosis and a cellulose-containing host. We hypothesize that amoeba could be such hosts.  相似文献   

11.
Serine/threonine protein kinases (STPK) play a major role in the physiology and pathogenesis of Mycobacterium tuberculosis. Here, we have examined the role of pknE, a STPK in the adaptive responses of M. tuberculosis using a deletion mutant ΔpknE. The survival of ΔpknE was assessed in the presence of stress (pH, surfactant and cell wall–damaging agents) and anti-tuberculosis drugs. ΔpknE had a defective growth in pH 7.0 and lysozyme (a cell wall–damaging agent) with better survival in pH 5.5, SDS and kanamycin (a second-line anti-tuberculosis drug). Furthermore, ΔpknE was reduced in cell size during growth in liquid media and exhibited hypervirulence in a guinea pig model of infection. In conclusion, our data suggest that pknE plays a role in adaptive response of M. tuberculosis regulating cellular integrity and survival.  相似文献   

12.
13.
Metabolic versatility has been increasingly recognized as a major virulence mechanism that enables Mycobacterium tuberculosis to persist in many microenvironments encountered in its host. Glucose is one of the most abundant carbon sources that is exploited by many pathogenic bacteria in the human host. M. tuberculosis has an intact glycolytic pathway that is highly conserved in all clinical isolates sequenced to date suggesting that glucose may represent a non-negligible source of carbon and energy for this pathogen in vivo. Fructose-6-phosphate phosphorylation represents the key-committing step in glycolysis and is catalyzed by a phosphofructokinase (PFK) activity. Two genes, pfkA and pfkB have been annotated to encode putative PFK in M. tuberculosis. Here, we show that PFKA is the sole PFK enzyme in M. tuberculosis with no functional redundancy with PFKB. PFKA is required for growth on glucose as sole carbon source. In co-metabolism experiments, we report that disruption of the glycolytic pathway at the PFK step results in intracellular accumulation of sugar-phosphates that correlated with significant impairment of the cell viability. Concomitantly, we found that the presence of glucose is highly toxic for the long-term survival of hypoxic non-replicating mycobacteria, suggesting that accumulation of glucose-derived toxic metabolites does occur in the absence of sustained aerobic respiration. The culture medium traditionally used to study the physiology of hypoxic mycobacteria is supplemented with glucose. In this medium, M. tuberculosis can survive for only 7–10 days in a true non-replicating state before death is observed. By omitting glucose in the medium this period could be extended for up to at least 40 days without significant viability loss. Therefore, our study suggests that glycolysis leads to accumulation of glucose-derived toxic metabolites that limits long-term survival of hypoxic mycobacteria. Such toxic effect is exacerbated when the glycolytic pathway is disrupted at the PKF step.  相似文献   

14.
The ability of Mycobacterium tuberculosis (M. tuberculosis) to accumulate lipid-rich molecules as an energy source obtained from host cell debris remains interesting. Additionally, the potential of M. tuberculosis to survive under different stress conditions leading to its dormant state in pathogenesis remains elusive. The exact mechanism by which these lipid bodies generated in M. tuberculosis infection and utilized by bacilli inside infected macrophage for its survival is still not understood. In this, during bacillary infection, many metabolic pathways are involved that influence the survival of M. tuberculosis for their own support. However, the exact energy source derived from infecting host cells remain elusive. Therefore, this study highlights several alternative energy sources in the form of triacylglycerol (TAG) and fatty acids, i.e. oleic acids accumulation, which are essential in dormancy-like state under M. tuberculosis infection. The prominent stage in tuberculosis (TB) infection is re-establishment of M. tuberculosis under stress conditions and deployment of a confined strategy to utilize these biomolecules for its persistence survival. So, growing in our understanding of these pathways will help us in accelerating therapies, which could reduce TB prevalence world widely.  相似文献   

15.

Background

Macrophage cell death following infection with Mycobacterium tuberculosis plays a central role in tuberculosis disease pathogenesis. Certain attenuated strains induce extrinsic apoptosis of infected macrophages but virulent strains of M. tuberculosis suppress this host response. We previously reported that virulent M. tuberculosis induces cell death when bacillary load exceeds ∼20 per macrophage but the precise nature of this demise has not been defined.

Methodology/Principal Findings

We analyzed the characteristics of cell death in primary murine macrophages challenged with virulent or attenuated M. tuberculosis complex strains. We report that high intracellular bacillary burden causes rapid and primarily necrotic death via lysosomal permeabilization, releasing hydrolases that promote Bax/Bak-independent mitochondrial damage and necrosis. Cell death was independent of cathepsins B or L and notable for ultrastructural evidence of damage to lipid bilayers throughout host cells with depletion of several host phospholipid species. These events require viable bacteria that can respond to intracellular cues via the PhoPR sensor kinase system but are independent of the ESX1 system.

Conclusions/Significance

Cell death caused by virulent M. tuberculosis is distinct from classical apoptosis, pyroptosis or pyronecrosis. Mycobacterial genes essential for cytotoxicity are regulated by the PhoPR two-component system. This atypical death mode provides a mechanism for viable bacilli to exit host macrophages for spreading infection and the eventual transition to extracellular persistence that characterizes advanced pulmonary tuberculosis.  相似文献   

16.
The typical two-component regulatory systems (TCSs), consisting of response regulator and histidine kinase, play a central role in survival of pathogenic bacteria under stress conditions such as nutrient starvation, hypoxia, and nitrosative stress. A total of 11 complete paired two-component regulatory systems have been found in Mycobacterium tuberculosis, including a few isolated kinase and regulatory genes. Increasing evidence has shown that TCSs are closely associated with multiple physiological process like intracellular persistence, pathogenicity, and metabolism. This review gives the two-component signal transduction systems in M. tuberculosis and their signal transduction roles in adaption to the environment.  相似文献   

17.
Mycobacterium tuberculosis utilizes many mechanisms to establish itself within the macrophage, and bacterially derived cAMP is important in modulating the host cellular response. Although the genome of M. tuberculosis is endowed with a number of mammalian-like adenylyl cyclases, only a single cAMP phosphodiesterase has been identified that can decrease levels of cAMP produced by the bacterium. We present the crystal structure of the full-length and sole cAMP phosphodiesterase, Rv0805, found in M. tuberculosis, whose orthologs are present only in the genomes of slow growing and pathogenic mycobacteria. The dimeric core catalytic domain of Rv0805 adopts a metallophosphoesterase-fold, and the C-terminal region builds the active site and contributes to multiple substrate utilization. Localization of Rv0805 to the cell wall is dependent on its C terminus, and expression of either wild type or mutationally inactivated Rv0805 in M. smegmatis alters cell permeability to hydrophobic cytotoxic compounds. Rv0805 may therefore play a key role in the pathogenicity of mycobacteria, not only by hydrolyzing bacterial cAMP, but also by moonlighting as a protein that can alter cell wall functioning.  相似文献   

18.
19.
Mycobacterium tuberculosis releases membrane vesicles packed with molecules that can modulate the immune response. Because environmental conditions often influence the production and content of bacterial vesicles, this study examined M. tuberculosis microvesicles released under iron limitation, a common condition faced by pathogens inside the host. The findings indicate that M. tuberculosis increases microvesicle production in response to iron restriction and that these microvesicles contain mycobactin, which can serve as an iron donor and supports replication of iron-starved mycobacteria. Consequently, the results revealed a role of microvesicles in iron acquisition in M. tuberculosis, which can be critical for survival in the host.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号