首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
干细胞是一种具有自我更新、无限增殖和多向分化能力的细胞.而多数肿瘤是由不同增殖潜能的不均一性细胞构成.随着对干细胞的研究不断深入,使人们对肿瘤的发生机制重新进行了审视,并在造血系统、脑、肺、乳腺等部位肿瘤中发现极少量的具有与干细胞非常类似生物学特性的细胞,称之为肿瘤干细胞,它们很可能是肿瘤细胞的起源.肿瘤干细胞的提出.使得靶向性杀伤肿瘤干细胞从而使根治肿瘤和防止肿瘤复发和转移成为可能.所以研究肿瘤干细胞的起源及其与肿瘤的发生关系,成为当前研究和治疗肿瘤领域的新热点.本文就肿瘤干细胞的存在证据、干细胞与肿瘤干细胞的异同点及它们与肿瘤发生之间的关系作简要的综述.  相似文献   

2.
To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.  相似文献   

3.
A selection of World Wide Web sites relevant to papers published in this issue of Current Opinion in Cell Biology.  相似文献   

4.
5.
6.
7.
The role of intercellular signals in plant development was investigated using phytochrome-induced formation of anthocyanin in cotyledons of white mustard as a model system. The problem was approached by irradiating different subregions of the cotyledon with a microbeam. This technique was combined with in situ hybridization of chalcone synthase mRNA after irradiation of the entire cotyledon. Individual cells that exhibited all-or-none responses with a resultant stochastic, patchy pattern were examined during early stages of anthocyanin synthesis. It was demonstrated that the responses of individual cells were subsequently integrated by long-range inhibitory signals. This process led to ordered and gradually developing patterns that could be detected when final stages were analyzed at the whole-organ level. The significance of these findings is discussed in terms of efforts toward a general understanding of photomorphogenesis in plants.  相似文献   

8.
9.
10.
11.
12.
Statins have proven their effectiveness in the treatment of cardiovascular disease. This class of drugs has also attracted attention as a potential treatment for dissimilar diseases such as certain types of cancers and neurodegenerative diseases. What appears to be a contradiction is that, in the case of cancer, it has been suggested that statins increase apoptosis and alter levels of Bcl-2 family members (e.g., reduce Bcl-2 and increase Bax), whereas studies mainly using noncancerous cells report opposite effects. This review examined studies reporting on the effects of statins on Bcl-2 family members, apoptosis, cell death, and cell protection. Much, but not all, of the evidence supporting the pro-apoptotic effects of statins is based on data in cancer cell lines and the use of relatively high drug concentrations. Studies indicating an anti-apoptotic effect of statins are fewer in number and generally used much lower drug concentrations and normal cells. Those conclusions are not definitive, and certainly, there is a need for additional research to determine if statin repositioning is justified for noncardiovascular diseases.  相似文献   

13.
Prozorov  A. A. 《Microbiology》2005,74(4):375-387
Data on the bacterial cell cycle published in the last 10–15 years are considered, with a special stress on studies of nucleoid segregation between dividing cells. The degree of similarity between the eukaryotic mitotic apparatus and the apparatus performing nucleoid separation is discussed.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 437–451.Original Russian Text Copyright © 2005 by Prozorov.  相似文献   

14.
15.
视差检测:简单细胞、复杂细胞及能量模型   总被引:2,自引:0,他引:2  
立体视觉信息的处理在于皮层双眼性细胞的活动.皮层中简单细胞对视差的编码方式被认为有两种:位置差(position shift)和相位差(phase shift),但简单细胞并不适合作为视差检测器.对一些复杂细胞的视差响应特性的生理研究,发现复杂细胞是一种比较适合的视差检测器.模型的研究提出基于这类简单细胞的复杂细胞能量模型,可以很好的检测视差,并可以较好的解释一些生理现象.  相似文献   

16.
Particle and cell counting is used for a variety of applications including routine cell culture, hematological analysis, and industrial controls1-5. A critical breakthrough in cell/particle counting technologies was the development of the Coulter technique by Wallace Coulter over 50 years ago. The technique involves the application of an electric field across a micron-sized aperture and hydrodynamically focusing single particles through the aperture. The resulting occlusion of the aperture by the particles yields a measurable change in electric impedance that can be directly and precisely correlated to cell size/volume. The recognition of the approach as the benchmark in cell/particle counting stems from the extraordinary precision and accuracy of its particle sizing and counts, particularly as compared to manual and imaging based technologies (accuracies on the order of 98% for Coulter counters versus 75-80% for manual and vision-based systems). This can be attributed to the fact that, unlike imaging-based approaches to cell counting, the Coulter Technique makes a true three-dimensional (3-D) measurement of cells/particles which dramatically reduces count interference from debris and clustering by calculating precise volumetric information about the cells/particles. Overall this provides a means for enumerating and sizing cells in a more accurate, less tedious, less time-consuming, and less subjective means than other counting techniques6.Despite the prominence of the Coulter technique in cell counting, its widespread use in routine biological studies has been prohibitive due to the cost and size of traditional instruments. Although a less expensive Coulter-based instrument has been produced, it has limitations as compared to its more expensive counterparts in the correction for "coincidence events" in which two or more cells pass through the aperture and are measured simultaneously. Another limitation with existing Coulter technologies is the lack of metrics on the overall health of cell samples. Consequently, additional techniques must often be used in conjunction with Coulter counting to assess cell viability. This extends experimental setup time and cost since the traditional methods of viability assessment require cell staining and/or use of expensive and cumbersome equipment such as a flow cytometer.The Moxi Z mini automated cell counter, described here, is an ultra-small benchtop instrument that combines the accuracy of the Coulter Principle with a thin-film sensor technology to enable precise sizing and counting of particles ranging from 3-25 microns, depending on the cell counting cassette used. The M type cassette can be used to count particles from with average diameters of 4 - 25 microns (dynamic range 2 - 34 microns), and the Type S cassette can be used to count particles with and average diameter of 3 - 20 microns (dynamic range 2 - 26 microns). Since the system uses a volumetric measurement method, the 4-25 microns corresponds to a cell volume range of 34 - 8,180 fL and the 3 - 20 microns corresponds to a cell volume range of 14 - 4200 fL, which is relevant when non-spherical particles are being measured. To perform mammalian cell counts using the Moxi Z, the cells to be counted are first diluted with ORFLO or similar diluent. A cell counting cassette is inserted into the instrument, and the sample is loaded into the port of the cassette. Thousands of cells are pulled, single-file through a "Cell Sensing Zone" (CSZ) in the thin-film membrane over 8-15 seconds. Following the run, the instrument uses proprietary curve-fitting in conjunction with a proprietary software algorithm to provide coincidence event correction along with an assessment of overall culture health by determining the ratio of the number of cells in the population of interest to the total number of particles. The total particle counts include shrunken and broken down dead cells, as well as other debris and contaminants. The results are presented in histogram format with an automatic curve fit, with gates that can be adjusted manually as needed.Ultimately, the Moxi Z enables counting with a precision and accuracy comparable to a Coulter Z2, the current gold standard, while providing additional culture health information. Furthermore it achieves these results in less time, with a smaller footprint, with significantly easier operation and maintenance, and at a fraction of the cost of comparable technologies.  相似文献   

17.
18.
Cell engineering has been used to improve animal cells’ central carbon metabolism. Due to the central carbon metabolism’s inefficiency and limiting input of carbons into the TCA cycle, key reactions belonging to these pathways have been targeted to improve cultures’ performance. Previous works have shown the positive effects of overexpressing PYC2, MDH II and fructose transporter. Since each of these modifications was performed in different cell lines and culture conditions, no comparisons between these modifications can be made. In this work we aim at contrasting the effect of each of the modifications by comparing pools of transfected IgG producing CHO cells cultivated in batch cultures. Results of the culture performance of engineered clones indicate that even though all studied clones had a more efficient metabolism, not all of them showed the expected improvement on cell proliferation and/or specific productivity. CHO cells overexpressing PYC2 were able to improve their exponential growth rate but IgG synthesis was decreased, MDH II overexpression lead to a reduction in cell growth and protein production, and cells transfected with the fructose transporter gene were able to increase cell density and reach the same volumetric protein production as parental CHO cells in glucose. We propose that a redox unbalance caused by the new metabolic flux distribution could affect IgG assembly and protein secretion. In addition to reaction dynamics, thermodynamic aspects of metabolism are also discussed to further understand the effect of these modifications over central carbon metabolism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号