首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

2.
Summary A field experiment was performed to assess the effects of Rhizobium inoculation and nitrogen fertilizer (100 kg N ha–1) on four cultivars of Phaseolus beans; Carioca, Negro Argel, Venezuela 350 and Rio Tibagi. In the inoculated treatment 2.5 kg N ha–1 of15N labelled fertilizer was added in order to apply the isotope dilution technique to quantify the contribution of N2 fixation to the nutrition of these cultivars.Nodulation of all cultivars in the uninoculated treatments was poor, but the cultivars Carioca and Negro Argel were well nodulated when inoculated. Even when inoculated, nodulation of the cultivars Venezuela 350 and Rio Tibagi was poor and these cultivars showed little response to inoculation in terms of nitrogen accumulation or grain yield. The estimates of the contribution of N2 fixation estimated using the isotope dilution technique, for the Carioca and Negro Argel cultivars, amounted to 31.7 and 18.4 kg N ha–1 respectively. These two cultivars produced 991 and 883 kg ha–1 of grain, respectively, when inoculated and 663 and 620 kg ha–1 with the addition of 100 kg N ha–1 of N fertilizer. The response to nitrogen was particularly poor due to high leaching losses in the very sandy soil at the experimental site.The Venezuela 350 and Rio Tibagi cultivars only responded to N fertilizer and not to inoculation with Rhizobium which stresses the great importance of selecting plant cultivars for nitrogen fixation in the field.  相似文献   

3.
Field studies were conducted in Niger using 15N-labeled fertilizers to assess the fate and efficiency of fertilizer N in pearl millet (Pennisetum glaucum [L.] R.Br.) production. Total plant uptake of fertilizer N was low in all cases (20%–37%), and losses were severe (25%–53%). The majority of N remaining in the soil was found in the 0- to 15-cm layer though some enrichment at lower depths was found when the N fertilizer was calcium ammonium nitrate (CAN). In a comparison of urea placement methods (band, broadcast, or point placement), no significant differences in 15N uptake or yield were noted though point placement did exacerbate 15N loss. The mechanism of N loss is believed to have been ammonia volatilization. Yields were similar whether urea or CAN was used, but 15N uptake from CAN was higher. A statistical model was developed relating millet yield and N response to midseason rainfall. In drought years, no N response was found, whereas in years of good rainfall a response was found of 15 kg grain for each kilogram of N applied (at 30 kg N ha-1 rate).  相似文献   

4.
In a field experiment using microplots, a flooded Crowley silt loam (Typic Albaqualfs) rice soil was fertilized with 15N labelled (60–74 atom %) urea and KNO3. Emission of N2, N2O and CH4 and accumulation in soil were measured for 21 d after fertilizer application.Emission of 15N2-N measured from the urea and KNO3 treated plots ranged from <15 to 570 and from 330 to 3,420 g ha–1 d–1, respectively. Entrapped 15N2-N in the urea treated microplots was significantly lower (<15 g to 2.1 kg ha–1) on all sampling dates compared to the 15N2-N gas accumulation in the KNO3 treated plots (6.4 to 31.5 kg ha–1). Emissions of N2O-N were low and did not exceed 4 g ha–1 d–1. Fluxes of CH4 from the fertilizer and control plots were low and never exceeded 33 g ha–1 d–1. Maximum accumulation of CH4 in the flooded soil measured 460 and 195 g ha–1 for the urea and KNO3 treatments, respectively.  相似文献   

5.
Jensen  L.S.  Christensen  L.  Mueller  T.  Nielsen  N.E. 《Plant and Soil》1997,190(2):193-202
We studied the fate of 15N-labelled fertilizer nitrogen in a sandy loam soil after harvest of winter oilseed rape (Brassica napus L. cv. Ceres) given 100 or 200 kg N ha-1 in spring, with or without irrigation. Our main objective was to quantify the temporal variations of the soil mineral N, the extractable soil organic N and soil microbial biomass N, and fertilizer derived N in these pools during autumn and winter. Nitrogen use efficiency of the oilseed rape crop varied from 47% of applied N in the 100N, irrigated treatment to 34% in the 200N, non-irrigated treatment. However, only in the latter treatment did we find significantly higher fertilizer derived soil mineral N than in the three other treatments which all had low soil mineral N contents at the first sampling after harvest (8 days after stubble tillage). Between 31% and 42% of the applied N could not be accounted for in the harvested plants or 0-15 cm soil layer at this first sampling. Over the following autumn and winter none of the remaining fertilizer derived soil N was lost from the 0–5 cm depth, but from the 5–15 cm depth a marked proportion of N derived from fertilizer was lost, probably by leaching. Negligible amounts of fertilizer derived extractable soil organic and mineral N (<1 kg N ha-1, 0-15 cm) were found in all treatments after the first sampling.Soil microbial biomass N was not significantly affected by treatments and showed only small temporal variability (±11% of the mean 76 kg N ha-1, 0- 15 cm depth). Surprisingly, the average amount of soil microbial biomass N derived from fertilizer was significantly affected by the treatments, with the extremes being 5.5 and 3.1 kg N ha-1 in the 200N, non-irrigated and 100N, irrigated treatments, respectively. Also, the estimated exponential decay rate of microbial biomass N derived from fertilizer, differed greatly (2 fold) between these two treatments, indicating highly different microbial turnover rates in spite of the similar total microbial biomass N values. In studies utilising 15N labelling to estimate turnover rates of different soil organic matter pools this finding is of great importance, because it may question the assumption that turnover rates are not affected by the insertion of the label.  相似文献   

6.
Present nutrient management recommendations for irrigated rice in West Africa are typically uniform for large regions. Even with optimal crop management, spatial variability of indigenous nutrient supplies may cause low fertilizer efficiency, low productivity of expensive inputs and high losses to the environment. Substantial efficiency increases were achieved with site- and season-specific nutrient management approaches, but the relative importance of different components (site or season) or of the precision level used (field, scheme, or region) remained unclear. We conducted a field trial in the Senegal River valley to investigate short-range variability of indigenous nutrient supplies of N (INS), P (IPS), and K (IKS) on a three hectare farm, and subsequently used the field data and simulation tools to study the agro-economic effects of fertilizer management options with different precision levels.Spatial variability of soil characteristics and of indigenous nutrient supplies (IS) at field level was high and covered a large part of the variability reported in regional studies. INS ranged from 19 to 78 kg N ha–1, IPS ranged from 11 to 39 kg P ha– 1, and IKS ranged from 70 to 150 kg K ha–1. Rice yield ranged from 2.2 to 6.0 Mg ha–1 in N omission plots, from 4.1 to 9.8 Mg ha–1 in P omission plots, and from 5.3 to 9.6 Mg ha–1 in K omission plots. The highest yield in the fully fertilized treatment was 11.6 Mg ha–1. Simulated potential yield was 11.8 Mg ha–1. Field-specific fertilizer management and an economically optimal target yield resulted in an average yield of 9.6 Mg ha–1 compared to 7.5 Mg ha–1 for the existing uniform recommendation. Net benefit from fertilizer use dropped by 19% as a result of reduced precision. Non-season-specific recommendations accounted for 12% of net benefit loss, whereas lower spatial precision contributed 7% to the net benefit loss. We concluded that uniform domain-specific recommendations within agro-ecological zones (i.e. adjusted to the seasonal yield potential) modified by crop diagnostics offer the best opportunities to optimize fertilizer efficiency and net benefits of fertilizer use for intensive irrigated rice-based systems in West Africa.  相似文献   

7.
The novel cultivation of paddy rice in aerobic soil reveals the great potential not only for water-saving agriculture, but also for rice intercropping with legumes and both are important for the development of sustainable agriculture. A two-year field experiment was carried out to investigate the yield advantage of intercropping peanut (Arachis hypogaea L., Zhenyuanza 9102) and rice (Oryza sativa L., Wuyujing 99-15) in aerobic soil, and its effect on soil nitrogen (N) fertility. A pot experiment was also conducted to examine the N2-fixation by peanut and N transfer from peanut to rice at three N fertilizer application rates, i.e., 15, 75 and 150 kg N ha–1 using a 15N isotope dilution method. The results showed that the relative advantage of intercropping, expressed as land equivalent ratio (LER), was 1.41 in 2001 and 1.36 in 2002. Both area-adjusted yield and N content of rice were significantly increased in the intercropping system while those of peanut were not significantly different between intercropping and monocropping systems. The yields of rice grain and peanut, for example, were increased by 29–37% and 4–7% in the intercropping system when compared to the crop grown in the monocropping system. The intercropping advantage was mainly due to the sparing effect of soil inorganic N contributed by the peanut. This result was proved by the higher soil mineral N concentration under peanut monocropping and intercropping than under the rice monocropping system.%Ndfa (nitrogen derived from atmosphere) by peanut was 72.8, 56.5 and 35.4% under monocropping and 76.1, 53.3 and 50.7% under the intercropping system at N fertilizer application rates of 15, 75 and 150 kg ha–1, respectively. The 15N-based estimates of N transfer from peanut (%NTFL) was 12.2, 9.2 and 6.2% at the three N fertilizer application rates. N transferred from peanut accounted for 11.9, 6.4 and 5.5% of the total N accumulated in the rice plants in intercropping at the same three N fertilizer application rates, suggesting that the transferred N from peanut in the intercropping system made a contribution to the N nutrition of rice, especially in low-N soil.  相似文献   

8.
A field experiment was conducted using15N methodology to study the effect of cultivation of faba bean (Vicia faba L.), pea (Pisum sativum L.) and barley (Hordeum vulgare L.) on the N status of soil and their residual N effect on two succeeding cereals (sorghum (Sorghum vulgare) followed by barley). Faba bean, pea and barley took up 29.6, 34.5 and 53.0 kg N ha–1 from the soil, but returned to soil through roots only 11.3, 10.8 and 5.7 kg N ha–1, respectively. Hence, removal of faba bean, pea and barley straw resulted in a N-balance of about –18, –24, and –47 kg ha–1 respectively. A soil nitrogen conserving effect was observed following the cultivation of faba bean and pea compared to barley which was of the order of 23 and 18 kg N ha–1, respectively. Cultivation of legumes resulted in a significantly higher AN value of the soil compared to barley. However, the AN of the soil following fallow was significantly higher than following legumes, implying that the cultivation of the legumes had depleted the soil less than barley but had not added to the soil N compared to the fallow. The beneficial effect of legume cropping also was reflected in the N yield and dry matter production of the succeeding crops. Cultivation of legumes led to a greater exploitation of soil N by the succeeding crops. Hence, appreciable yield increases observed in the succeeding crops following legumes compared to cereal were due to a N-conserving effect, carry-over of N from the legume residue and to greater uptake of soil N by the succeeding crops when previously cropped to legumes.  相似文献   

9.
This paper 1) reviews improvements and new approaches in methodologies for estimating biological N2 fixation (BNF) in wetland soils, 2) summarizes earlier quantitative estimates and recent data, and 3) discusses the contribution of BNF to N balance in wetland-rice culture.Measuring acetylene reducing activity (ARA) is still the most popular method for assessing BNF in rice fields. Recent studies confirm that ARA measurements present a number of problems that may render quantitative extrapolations questionable. On the other hand, few comparative measures show ARA's potential as a quantitative estimate. Methods for measuring photodependent and associative ARA in field studies have been standardized, and major progress has been made in sampling procedures. Standardized ARA measurements have shown significant differences in associative N2 fixation among rice varieties.The 15N dilution method is suitable for measuring the percentage of N derived from the atmosphere (% Ndfa) in legumes and rice. In particular, the 15N dilution technique, using available soil N as control, appears to be a promising method for screening rice varieties for ability to utilize biologically fixed N. Attempts to adapt the 15N dilution method to aquatic N2 fixers (Azolla and blue-green algae [BGA]) encountered difficulties due to the rapid change in 15N enrichment of the water.Differences in natural 15N abundance have been used to show differences among plant organs and species or varieties in rice and Azolla, and to estimate Ndfa by Azolla, but the method appears to be semi-quantitative.Recent pot experiments using stabilized 15N-labelled soil or balances in pots covered with black cloth indicate a contribution of 10–30 kg N ha-1 crop-1 by heterotrophic BNF in flooded planted soil with no or little N fertilizer used.Associative BNF extrapolated from ARA and 15N incorporation range from 1 to 7 kg N ha-1 crop-1. Straw application increases heterotrophic and photodependent BNF. Pot experiments show N gains of 2–4 mg N g-1 straw added at 10 tons ha-1.N2 fixation by BGA has been almost exclusively estimated by ARA and biomass measurements. Estimates by ARA range from a few to 80 kg N ha-1 crop-1 (average 27 kg). Recent extensive measurements show extrapolated values of about 20 kg N ha-1 crop-1 in no-N plots, 8 kg in plots with broadcast urea, and 12 kg in plots with deep-placed urea.Most information on N2 fixed by Azolla and legume green manure comes from N accumulation measurements and determination of % Ndfa. Recent trials in an international network show standing crops of Azolla averaging 30–40 kg N ha-1 and the accumulation of 50–90 kg N ha-1 for two crops of Azolla grown before and after transplanting rice. Estimates of % Ndfa in Azolla by 15N dilution and delta 15N methods range from 51 to 99%. Assuming 50–80% Ndfa in legume green manures, one crop can provide 50–100 kg N ha-1 in 50 days. Few balance studies in microplots or pots report extrapolated N gains of 150–250 kg N ha-1 crop-1.N balances in long-term fertility experiments range from 19 to 98 kg N ha-1 crop-1 (average 50 kg N) in fields with no N fertilizer applied. The problems encountered with ARA and 15N methods have revived interest in N balance studies in pots. Balances are usually highest in flooded planted pots exposed to light and receiving no N fertilizer; extrapolated values range from 16 to 70 kg N ha-1 crop-1 (average 38 kg N). A compilation of balance experiments with rice soil shows an average balance of about 30 kg N ha-1 crop-1 in soils where no inorganic fertilizer N was applied.Biological N2 fixation by individual systems can be estimated more or less accurately, but total BNF in a rice field has not yet been estimated by measuring simultaneously the activities of the various components in situ. As a result, it is not clear if the activities of the different N2-fixing systems are independent or related. A method to estimate in situ the contribution of N2 fixed to rice nutrition is still not available. Dynamics of BNF during the crop cycle is known for indigenous agents but the pattern of fixed N availability to rice is known only for a few green manure crops.  相似文献   

10.
Høgh-Jensen  H.  Schjoerring  J.K. 《Plant and Soil》1997,197(2):187-199
Seasonal variation in N2 fixation, N transfer from clover to ryegrass, and soil N absorption in white clover–ryegrass swards were investigated under field conditions over three consecutive years. The plots were established with different seeding ratios of clover and ryegrass and contrasting fertilizer N ranging from 3 to 72 kg ha-1 year-1.An initially poor clover population needed at least one growing season to reach the same yield output as an initially well established clover population. The clover content of the sward decreased by the annual application of 72 kg N ha-1 but not by smaller N dressings.The total amount of atmospherically derived N in clover growing in mixture with ryegrass was, on average over the three years equal to 83, 71, 68 and 60 kg N ha-1 for the treatments of 3, 24, 48 and 72 kg N ha-1, respectively. The proportion of atmospherically derived N declined with increasing N application, but never became smaller than 80% of total clover N. The proportion of atmospherically derived N in a pure stand white clover amounted to 60–80% of the total N content, equivalent to 109, 110, 103 and 90 kg N ha-1 for the treatments of 3, 24, 48 and 72 kg N ha-1, respectively.Only small amounts of atmospherically derived N was transferred to the associated ryegrass during the first production year, while in each of the following years up to 21 kg ha-1 was transferred. The average amount of N transferred from clover to ryegrass was equivalent to 3, 16 and 31% of the N accumulated in ryegrass in the first, second and third production year, respectively. Expressed relative to the total amount of fixed N2 in the clover–ryegrass mixture, the transfer amounted to 3, 17 and 22% in the first, second and third production year, respectively. Thus transfer of atmospherically derived N from clover contributed significantly to the N economy of the associated ryegrass.The clover–ryegrass mixture absorbed constantly higher amount of soil derived N than the pure stands of the two species. Only 11% of the total accumulated fertilizer N and soil derived N in the mixture was contained within the clover component. Lower water use efficiencies for the plants grown in mixture compared to pure stands were mainly related to the increased N uptake in the mixture, with the subsequent increase in growth compared to the pure stands.It is concluded that positive interactions between clover and ryegrass growing in mixture ensure a more efficient fixation of atmospheric N2 and absorption of fertilizer N and soil derived N than pure stands of the same species.  相似文献   

11.
Summary The symbiotic association of the water fernAzolla with the blue-green algaAnabaena azollae can fix 30–60 kg N ha–1 per rice cropping season. The value of this fixed N for rice production, however, is only realized once the N is released from theAzolla biomass and taken up by the rice plants. The availability of N applied asAzolla or as urea was measured in field experiments by two15N methods. In the first,Azolla caroliniana (Willd.) was labelled with15N in nutrient solution and incorporated into the soil at a rate of 144 kg N ha–1. The recovery ofAzolla-N in the above ground parts of rice [Oryza sativa (L) cv. Nucleoryza] was found to be 32% vs. 26% for urea applied at a rate of 100 kg N/ha; there was no significant difference in recovery. In the second, 100 kg N/ha of15N-urea was applied separately or in combination with either 250 or 330 kg N ha–1 of unlabelledAzolla. At the higher rate, the recovery ofAzolla-N was significantly greater than that of urea. There was a significant interaction when both N sources were applied together, which resulted in a greater recovery of N from each source in comparison to that source applied separately. Increasing the combined urea andAzolla application rate from 350 kg N ha–1 to 430 kg N ha–1 increased the N yield but had no effect on the dry matter yield of rice plants. The additional N taken up at the higher level of N application accumulated to a greater extent in the straw compared to the panicles. Since no assumptions need to be made about the contribution of soil N in the method using15N-labelledAzolla, this method is preferable to the15N dilution technique for assessing the availability ofAzolla-N to rice. Pot trials usingAzolla stored at –20°C or following oven-drying showed that both treatments decreased the recovery of N by one third in comparison to freshAzolla.  相似文献   

12.
N fertilizer recommendatons are based on the Nmin content in the useable soil layer. However, for spinach, information from the literature differs for both depth of useable soil layer and N fertilizer recommendations. The objectives of these experiments were to study the importance of different soil zones for N supply to spinach and to kohlrabi, and to examine the relationship between N supply in the useable soil layer and yield of spinach. Field experiments with both crops showed that about 80% of total root length was in the upper 0–15 cm soil layer and less than 5% below 30 cm. Spinach roots were present in the 15–30 cm layer only during the last 2 weeks before harvest, whereas kohlrabi roots penetrated this layer already 4 weeks before harvest. Placement of NO3 below 30 cm depth did not influence root distribution. The top layer contributed about 80% to total N uptake for both crops. The 15–30 cm soil layer can maximally contribute 40–50 kg N ha-1. It is concluded that N fertilizer recommendations for both crops should be based on the Nmin content of the 0–30 cm soil layer. Maximum yield of spinach (300 dt f.m. ha-1) was obtained at 150 kg N supply ha-1. The nitrate residue was 50 kg N ha-1 at 0–30 cm in this treatment. It is argued that the nitrate residues at harvest could be decreased by delaying the harvest for a few days, at slightly suboptimal N supply.  相似文献   

13.
Yields of above ground biomass and total N were determined in summer-grown maize and cowpea as sole crops or intercrops, with or without supplementary N fertilizer (25 kg N ha−1, urea) at an irrigated site in Waroona, Western Australia over the period 1982–1985. Good agreement was obtained between estimates of N2 fixation of sole or intercrop cowpea (1984/85 season) based on the15N natural abundance and15N fertilizer dilution techniques, both in the field and in a glasshouse pot study. Field-grown cowpea was estimated to have received 53–69% of its N supply from N2-fixation, with N2-fixation onlyslightly affected by intercropping or N fertilizer application. Proportional reliance on N2-fixation of cowpea in glasshouse culture was lower (36–66%) than in the field study and more affected by applied N. Budgets for N were drawn up for the field intercrops, based on above-ground seed yields, return of crop residues, inputs of fixed N and fertilizer N. No account was taken of possible losses of N through volatilization, denitrification and leaching or gains of N in the soil from root biomass. N2-fixation was estimated tobe 59 kg N ha−1 in the plots receiving no fertilizer N, and 73 kg N ha−1 in plots receiving 25 kg N ha−1 as urea. Comparable fixation by sole cowpea was higher (87 and 82 kg N ha−1 respectively) but this advantage was outweighed by greater land use efficiency by the intercrop than sole crops.  相似文献   

14.
There is a growing concern about excessive nitrogen (N) and water use in agricultural systems in North China due to the reduced resource use efficiency and increased groundwater pollution. A two-year experiment with two soil moisture by four N treatments was conducted to investigate the effects of N application rates and soil moisture on soil N dynamics, crop yield, N uptake and use efficiency in an intensive wheat–maize double cropping system (wheat–maize rotation) in the North China Plain. Under the experimental conditions, crop yield of both wheat and maize did␣not␣increase significantly at N rates above 200 kg N ha−1. Nitrogen application rates affected little on ammonium-N (NH4-N) content in the 0–100 cm soil profiles. Excess nitrate-N (NO3-N), ranging from 221 kg N ha−1 to 620 kg N ha−1, accumulated in the 0–100 cm soil profile at the end of second rotation in the treatments with N rates of 200 kg N ha−1 and 300 kg N ha−1. In general, maize crop has higher N use efficiency than wheat crop. Higher NO3-N leaching occurred in maize season than in wheat season due to more water leakage caused by the concentrated summer rainfall. The results of this study indicate that the optimum N rate may be much lower than that used in many areas in the North China Plain given the high level of N already in the soil, and there is great potential for reducing N inputs to increase N use efficiency and to mitigate N leaching into the groundwater. Avoiding excess water leakage through controlled irrigation and matching N application to crop N demand is the key to reduce NO3-N leaching and maintain crop yield. Such management requires knowledge of crop water and N demand and soil N dynamics as they change with variable climate temporally and spatially. Simulation modeling can capture those interactions and is considered as a powerful tool to assist in␣the␣future optimization of N and irrigation managements. Section Editor: L. Wade  相似文献   

15.
A pot and a lysimeter experiment were carried out to study the effects of inoculation of the roots of rice seedlings with R. capsulatus in combination with graded levels of nitrogen (N) fertilizer on growth and yield of the rice variety Giza 176. Inoculation increased all the measured growth parameters and yield attributes, but the statistically significant differences at all N levels tested were only those for plant dry weight, number of productive tillers, grain and straw yields. The absolute increases in grain yield of the pot experiment due to inoculation were 0.63, 0.93 and 1.22 ton ha–1 at 0, 47.6 and 95.2 kg N ha–1, respectively. The results suggest that inoculation along with 47.6 kg N ha–1 can save 50% of the nitrogen fertilizer needed for optimum G176 rice crop. However, inoculation along with 95.2 kg N ha–1 can increase grain yield by about 1.2 ton ha–1. This is probably the first reported evidence of a beneficial effect of phototrophic purple nonsulphur bacteria on rice growth and yield under flooded soil conditions.  相似文献   

16.
Nitrogen (N) fertilization potentially affects soil N mineralization and leaching, and can enhance NH3 volatilization, thus impacting crop production. A fertilizer experiment with five levels of N addition (0, 79, 147, 215 and 375 kg N ha-1) was performed in 2009 and 2010 in a maize field in Huanghuaihai region, China, where > 300 kg N ha-1 has been routinely applied to soil during maize growth period of 120 days. Responses of net N mineralization, inorganic N flux (0–10cm), NH3 volatilization, and maize yield to N fertilization were measured. During the growth period, net N mineralization and nitrification varied seasonally, with higher rates occurring in August and coinciding with the R1 stage of maize growth. Soil NO3 -N contributed to more than 60% of inorganic N flux during maize growth. Cumulative NH3 volatilization increased with N additions, with total NH3 volatilization during maize growth accounting for about 4% of added N. Relative to the control, mean maize yield in the fertilizer treatments increased by 17% and 20% in 2009 and 2010, respectively. However, grain yield, aboveground biomass, and plant N accumulation did not increase with added N at levels > 215 kg N ha-1. These results suggest that the current N rate of 300 kg N ha-1 is not only excessive, but also reduces fertilizer efficacy and may contribute to environmental problems such as global warming and eutrophication of ground water and streams.  相似文献   

17.
Summary In a udic chromusterts the transformation of an initial application of15N-urea @ 80 kg N ha–1 to rice (Oryza sativa L.) in rice-wheat (R-W) and to wheat (Triticum aestivum L.) in wheat-rice (W-R) rotations was followed in 6 successive crops in each rotation. All rice crops were grown in irrigated wetland and wheat in irrigated upland conditions.The first wheat crop in W-R rotation utilized 22 kg fertilizer N ha–1 as compared to 19 kg by the corresponding rice crop in R-W rotation. But the latter absorbed more soil N than the former. About 69% of the total N uptake in rice was derived from mineralization of soil organic N as compared to 61% in wheat.The succeeding wheat crop in R-W rotation utilized 6.7% of the residual fertilizer N in the soil but the corresponding rice crop in W-R rotation only 2.2%. The higher utilization appeared to be related to a greater incorporation of labelled fertilizer N in mineral and hexosamine fractions of the soil N. After the second crop in each rotation, the average residual fertilizer N utilization in the next 4 crops ranged between 3 and 4%.The total recovery of15N-urea in all crops amounted to 21.7 and 24.3 kg N ha–1 in R-W and W-R rotation, respectively. At the end of the experiment, about 9 to 10 kg ha–1 of the applied labelled N was found in soil upto 60 cm depth. Most of the labelled soil N (69–76%) was located in the upper 0–20 cm soil layer indicating little movement to lower depths despite intensive cropping for 4 years.  相似文献   

18.
In a field experiment performed in microplots, winter wheat was fertilized at two different total N dressings (135 and 180 kg ha–1) split-applied as Na15NO3 in three equal applications at tillering, stem elongation, and flag leaf.No significant differences were found in the percentage recovery values for the entire plant at the three split applications between the two N dressings. The total percentage recovery of fertilizer N by the plant was high and practically equal at both fertilization levels (76.65% and 75.84% for 135 and 180 kg N ha–1, respectively); crop yields were also similar. In contrast, gaseous losses calculated after drawing up the balance sheet were, in absolute values, higher for the tillering and stem elongation split applications when using the 180 kg N ha–1 dressing (7.67 and 4.84 kg N ha–1, respectively) than for the 135 kg N ha–1 dressing (3.45 and 1.26 kg N ha–1, respectively). They were found to be zero at flag leaf at both fertilization levels. The amount of applied fertilizer N did not influence the amount of N taken up from the soil which was about 143 kg ha–1.  相似文献   

19.
Sikora  L. J.  Enkiri  N. K. 《Plant and Soil》2001,235(1):65-73
Composts are considered low analysis fertilizers because their nitrogen and phosphorus content are around 1% and the organic nitrogen mineralization rate is near 10%. If compost is added to agricultural land at the N requirement of grain crops (40 – 100 kg N ha–1), application rates approach 40–100 mg ha–1. Much lower rates may be advisable to avoid rapid accumulation of growth limiting constituents such as heavy metals found in some composts. Combining low amendment rates of composts with sufficient fertilizer to meet crop requirements is an appealing alternative which (a) utilizes composts at lower rates than those needed to supply all the crop N requirement, (b) reduces the amount of inorganic fertilizer applied to soils, and (c) reduces the accumulation of non-nutrient compost constituents in soils. A study was conducted to compare the effects of blends of biosolids compost (C) with 15N urea(U) or 15NH4 15NO3 (N) fertilizers to fertilizer alone on tall fescue (Festuca arundinacea L.) growth and N uptake. Blends which provided 0, 20, 40 or 60 mg N kg–1 application rate as compost N and 120, 100, 80 or 60 mg N kg–1 as fertilizer N, respectively, were added to Sassafras soil (Typic Hapludults). Fescue was grown on the blends in a growth chamber for 98 days. Fescue yields recorded by clippings taken at 23, 46 and 98 days and roots harvested after the 98-day clipping increased with increasing fertilizer level for both NH4NO3 and urea and with or without compost. Nitrogen uptake by fescue responded similarly to yield with increases recorded with increasing fertilizer levels with or without compost. Paired comparisons based on cumulative 98-day clippings data showed that yields from blends were equal to yields from fertilizer treatments containing the same percentage of fertilizer as the blends. These data indicated that compost did not provide sufficient plant-available N to increase yields or N uptake. None of the blends equaled 120 mg N kg–1 fertilizer rate except for 100 mg NH4NO3-or urea-N kg–1 –20 mg compost-N kg–1blends. The data suggest that biosolids compost blended with fertilizer at a rate of 2–6 mg ha –1 did not supply sufficient additional available N to increase yields or N uptake over those of fertilizer alone.  相似文献   

20.
Summary The fate of 100 kg N ha–1 applied as15N-urea and its modified forms was followed in 4 successive field-grown wetland rice crops in a vertisol. The first wet season crop recovered about 27 to 36.6% of the applied N depending upon the N source. In subsequent seasons the average uptake was very small and it gradually decreased from 1.4 to 0.5 kg N ha–1 although about 18 to 20, 12 to 17 and 14 to 18 kg ha–1 residual fertilizer N was available in the root zone after harvest of first, second and third crops, respectively. The average uptake of the residual fertilizer N was only 7.6% in the second crop and it decreased to 4.5% in the third and to 3.2% in the fourth crop although all these crops were adequately fertilized with unlabelled urea. The basal application of neem coated urea was more effective in controlling the leaching loss of labelled NH4+NO3–N than split application of uncoated urea. In the first 3 seasons in which15N was detectable, the loss of fertilizer N through leaching as NH4+NO3–N amounted to 0.5 kg ha–1 from neem-coated urea, 1.5 kg from split urea and 4.1 kg from coal tar-coated urea. At the end of 4 crops, most of the labelled fertilizer N (about 69% on average) was located in the upper 0–20 cm soil layer showing very little movement beyond this depth. In the profile sampled upto 60 cm depth, totally about 13.8 kg labelled fertilizer N ha–1 from neem-coated urea, 12.7 kg from coal-tar coated urea, and 11.8 kg from split urea were recovered. The average recovery of labelled urea-N in crops and soil during the entire experimental period ranged between 42 and 51%. After correcting for leaching losses, the remaining 47 to 56% appeared to have been lost through ammonia volatilization and denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号