首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of ad lib use of an antibacterial soap containing 1.0% trichlorocarbanilide and 0.5% trifluoromethyldichlorocarbanilide on the bacterial flora of six skin sites of 132 subjects were measured by comparison with the flora of 93 control subjects who avoided the use of topical antibacterials. Each subject was examined once. The test soap produced significant reductions in geometric mean counts of the total aerobic flora on the back, chest, forearm, calf, and foot; counts were also reduced in the axilla, but not to a significant extent. The overall reduction by the test soap on all sites was 62% (P < 0.001). Neither age nor sex influenced the effect of the soap on the flora. The antibacterial soap also reduced the prevalence of Staphylococcus aureus on the skin, mostly by virtually eliminating it from areas other than the axilla. Partial inhibition of the gram-positive flora was not accompanied by an increase in gram-negative species. The latter were found principally in the axilla; Klebsiella pneumoniae and Enterobacter aerogenes were the species most frequently found.  相似文献   

2.
Malassezia yeasts are part of the resident cutaneous microbiota, and are also associated with skin diseases such as seborrheic dermatitis (SD). The role these fungi play in skin diseases and why they are pathogenic for only some individuals remain unclear. This study aimed to characterize Malassezia microbiota from different body sites in healthy and SD subjects from Brazil. Scalp and forehead samples from healthy, mild SD and severe SD subjects were collected. Non-scalp lesions from severe SD patients were also sampled. 5.8S rDNA/ITS2 amplicons from Malassezia sp. were analyzed by RFLP and sequencing. Results indicate that Malassezia microbiota did not group according to health condition or body area. Phylogenetic analysis revealed that three groups of sequences did not cluster together with any formally described species, suggesting that they might belong to potential new species. One of them was found in high proportions in scalp samples. A large variety of Malassezia subtypes were detected, indicating intra-specific diversity. Higher M. globosa proportions were found in non-scalp lesions from severe SD subjects compared with other areas, suggesting closer association of this species with SD lesions from areas other than scalp. Our results show the first panorama of Malassezia microbiota in Brazilian subjects using molecular techniques and provide new perspectives for further studies to elucidate the association between Malassezia microbiota and skin diseases.  相似文献   

3.
The composition and function of the human gut microbiota has been linked to health and disease. We previously identified correlations between habitual diet, microbiota composition gradients and health gradients in an unstratified cohort of 178 elderly subjects. To refine our understanding of diet–microbiota associations and differential taxon abundance, we adapted an iterative bi-clustering algorithm (iterative binary bclustering of gene sets (iBBiG)) and applied it to microbiota composition data from 732 faecal samples from 371 ELDERMET cohort subjects, including longitudinal samples. We thus identified distinctive microbiota configurations associated with ageing in both community and long-stay residential care elderly subjects. Mixed-taxa populations were identified that had clinically distinct associations. Microbiota temporal instability was observed in both community-dwelling and long-term care subjects, particularly in those with low initial microbiota diversity. However, the stability of the microbiota of subjects had little impact on the directional change of the microbiota as observed for long-stay subjects who display a gradual shift away from their initial microbiota. This was not observed in community-dwelling subjects. This directional change was associated with duration in long-stay. Changes in these bacterial populations represent the loss of the health-associated and youth-associated microbiota components and gain of an elderly associated microbiota. Interestingly, community-associated microbiota configurations were impacted more by the use of antibiotics than the microbiota of individuals in long-term care, as the community-associated microbiota showed more loss but also more recovery following antibiotic treatment. This improved definition of gut microbiota composition patterns in the elderly will better inform the design of dietary or antibiotic interventions targeting the gut microbiota.  相似文献   

4.
Seborrheic dermatitis (SD) is a recurrent common inflammatory skin disease that affects all ethnic groups in all regions worldwide. However, no specific treatment or preventive measure is yet available. Identifying effective treatments with acceptable safety and tolerability is desirable. In this study, scalp microbiota alterations were measured in SD, showing significantly greater abundance of Malassezia and Staphylococcus and diminished fungal and bacterial diversity compared with healthy controls. We investigated the benefit of a 4-week treatment with 0.5 mg ml-1 recombinant human thymosin β4 (rhTβ4) gel or 2% ketoconazole lotion on the scalp condition of 71 patients with SD compared with 21 healthy individuals. Clinical assessment (Adherent Scalp Flaking Score, and the Maximum Erythema Area) and physiological conditions (transepidermal water loss, hydration, and sebum secretion) were evaluated. The rhTβ4 treatment provided significantly greater efficacy than ketoconazole and a sustained effect in the treatment of scalp SD. More importantly, rhTβ4 dramatically improved the microbiome homeostasis and prompted a shift of scalp microflora towards healthy composition, helping symptoms and ameliorating physiological conditions more effectively and durably than ketoconazole. Our research demonstrated the scalp microbe dysbiosis of SD and highlighted rhTβ4 as a promising therapeutic strategy in the prevention and treatment of SD.  相似文献   

5.
The activity of the human armpit microbiota triggers the formation of body odor. We used differential 16S rRNA gene (rDNA)- and rRNA-based terminal-restriction fragment length polymorphism fingerprinting in combination with cloning and sequencing to identify active members of the human armpit microbiota. DNA and RNA were isolated from skin scrub samples taken from both armpits of 10 preconditioned, healthy males. The fingerprint profiles indicated pronounced similarities between the armpit microbiota in the right and the left axillae of an individual test person, but larger differences between the axilla microbiota of different individuals. Using 16S rDNA and rRNA sequence data, the majority of peaks in the armpit profiles were assigned to bacteria affiliated with well-known genera of skin bacteria. The relative abundances of all groups were similar among the rDNA and rRNA samples, suggesting that all groups of armpit bacteria were active. Surprisingly, the relative abundance of sequences affiliated with Peptoniphilus sp. was by far and with statistical significance the highest in the rRNA samples of the right armpits. Thus, bacteria affiliated with Peptoniphilus sp. might have been particularly active in the right axillae of the test persons, possibly owing to the handedness of the test persons, which might cause different environmental conditions in the right axillae.  相似文献   

6.

Background

Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb the cutaneous homeostasis of the host tissue and its commensal microbiota, but the dynamics of this process have not been studied before. Here we analyzed the microbiota of the surface layer and the deeper layers of the stratum corneum of normal skin, and we investigated the dynamics of recolonization of skin microbiota following skin barrier disruption by tape stripping as a model of superficial injury.

Results

We observed gender differences in microbiota composition and showed that bacteria are not uniformly distributed in the stratum corneum. Phylogenetic distance analysis was employed to follow microbiota development during recolonization of injured skin. Surprisingly, the developing neo-microbiome at day 14 was more similar to that of the deeper stratum corneum layers than to the initial surface microbiome. In addition, we also observed variation in the host response towards superficial injury as assessed by the induction of antimicrobial protein expression in epidermal keratinocytes.

Conclusions

We suggest that the microbiome of the deeper layers, rather than that of the superficial skin layer, may be regarded as the host indigenous microbiome. Characterization of the skin microbiome under dynamic conditions, and the ensuing response of the microbial community and host tissue, will shed further light on the complex interaction between resident bacteria and epidermis.  相似文献   

7.
The human oral cavity has an indigenous microbiota known to include a robust community of viruses. Very little is known about how oral viruses are spread throughout the environment or to which viruses individuals are exposed. We sought to determine whether shared living environment is associated with the composition of human oral viral communities by examining the saliva of 21 human subjects; 11 subjects from different households and 10 unrelated subjects comprising 4 separate households. Although there were many viral homologues shared among all subjects studied, there were significant patterns of shared homologues in three of the four households that suggest shared living environment affects viral community composition. We also examined CRISPR (clustered regularly interspaced short palindromic repeat) loci, which are involved in acquired bacterial and archaeal resistance against invading viruses by acquiring short viral sequences. We analyzed 2 065 246 CRISPR spacers from 5 separate repeat motifs found in oral bacterial species of Gemella, Veillonella, Leptotrichia and Streptococcus to determine whether individuals from shared living environments may have been exposed to similar viruses. A significant proportion of CRISPR spacers were shared within subjects from the same households, suggesting either shared ancestry of their oral microbiota or similar viral exposures. Many CRISPR spacers matched virome sequences from different subjects, but no pattern specific to any household was found. Our data on viromes and CRISPR content indicate that shared living environment may have a significant role in determining the ecology of human oral viruses.  相似文献   

8.
The human gut microbiota consists of complex microbial communities, which possibly play crucial roles in physiological functioning and health maintenance. China has evolved into a multicultural society consisting of the major ethnic group, Han, and 55 official ethnic minority groups. Nowadays, these minority groups inhabit in different Chinese provinces and some of them still keep their unique culture and lifestyle. Currently, only limited data are available on the gut microbiota of these Chinese ethnic groups. In this study, 10 major fecal bacterial groups of 314 healthy individuals from 7 Chinese ethnic origins were enumerated by quantitative polymerase chain reaction. Our data confirmed that the selected bacterial groups were common to all 7 surveyed ethnicities, but the amount of the individual bacterial groups varied to different degree. By principal component and canonical variate analyses of the 314 individuals or the 91 Han subjects, no distinct group clustering pattern was observed. Nevertheless, weak differences were noted between the Han and Zhuang from other ethnic minority groups, and between the Heilongjiang Hans from those of the other provinces. Thus, our results suggest that the ethnic origin may contribute to shaping the human gut microbiota.  相似文献   

9.
Chromosomal location of two cloned human satellite DNA III sequences pPD9 and pPD18 has been studied in 30 individuals by in situ hybridization. Pericentromeric localization of the DNA subsets studied was found in practically all chromosomes of the set. The majority of label was observed over the pericentromeric region of chromosome 9 (38.3% for pPD18 clone and 26.2% for pPD9), the short arm of chromosome 15 (17.2% - the pPD9 clone and 10.6% - the pPD18 clone) and the distal part of the long arm of Y chromosome (19.6% - the pPD9 clone and 15.4% - the pPD18 clone). Besides significant interchromosomal differences, moderately pronounced interindividual differences were also detected in the number of grains over the regular sites of the chromosomal location. Pretreatment of slides with DA/DAPI induced differences in the results of quantitative analysis is described.  相似文献   

10.
Aims: To compare the bacterial diversity of two different ecological regions including human forehead, human forearm and to estimate the influence of make‐up. Methods and Results: Twenty‐two swab‐scraped skin samples were analysed by profiling bacterial 16S rRNA genes using PCR‐based sequencing of randomly selected clones. Of the 1056 clones analysed, 67 genera and 133 species‐level operational taxonomic units (SLOTUs) belonging to eight phyla were identified. A core set of bacterial taxa was found in all samples, including Actinobacteria, Firmicutes, and Proteobacteria, but pronounced intra‐ and interpersonal variation in bacterial community composition was observed. Only 4·48% of the genera and 1·50% of the SLOTUs were found in all 11 subjects. In contrast to the highly diverse microbiota of the forearm skin, the forehead skin microbiota represented a small‐scale ecosystem with a few genera found in all individuals. The use of make‐up, including foundation and powder, significantly enlarged the community diversity on the forehead skin. Conclusions: Our study confirmed the presence of a highly diverse microbiota of the human skin as described recently. In contrast to forearm skin, gender does not seem to have much influence on the microbial community of the forehead skin. However, the use of make‐up was associated with a remarkable increase in the bacterial diversity. Significance and Impact of the Study: This study enhances our knowledge about the highly complex microbiota of the human skin and demonstrates for the first time the significant effect of make‐up on the bacterial diversity of the forehead skin.  相似文献   

11.
Huse SM  Ye Y  Zhou Y  Fodor AA 《PloS one》2012,7(6):e34242
We explore the microbiota of 18 body sites in over 200 individuals using sequences amplified V1-V3 and the V3-V5 small subunit ribosomal RNA (16S) hypervariable regions as part of the NIH Common Fund Human Microbiome Project. The body sites with the greatest number of core OTUs, defined as OTUs shared amongst 95% or more of the individuals, were the oral sites (saliva, tongue, cheek, gums, and throat) followed by the nose, stool, and skin, while the vaginal sites had the fewest number of OTUs shared across subjects. We found that commonalities between samples based on taxonomy could sometimes belie variability at the sub-genus OTU level. This was particularly apparent in the mouth where a given genus can be present in many different oral sites, but the sub-genus OTUs show very distinct site selection, and in the vaginal sites, which are consistently dominated by the Lactobacillus genus but have distinctly different sub-genus V1-V3 OTU populations across subjects. Different body sites show approximately a ten-fold difference in estimated microbial richness, with stool samples having the highest estimated richness, followed by the mouth, throat and gums, then by the skin, nasal and vaginal sites. Richness as measured by the V1-V3 primers was consistently higher than richness measured by V3-V5. We also show that when such a large cohort is analyzed at the genus level, most subjects fit the stool "enterotype" profile, but other subjects are intermediate, blurring the distinction between the enterotypes. When analyzed at the finer-scale, OTU level, there was little or no segregation into stool enterotypes, but in the vagina distinct biotypes were apparent. Finally, we note that even OTUs present in nearly every subject, or that dominate in some samples, showed orders of magnitude variation in relative abundance emphasizing the highly variable nature across individuals.  相似文献   

12.
Centromeric region of human chromosome 21 comprises two long alphoid DNA arrays: the well homogenized and CENP-B box-rich alpha21-I and the alpha21-II, containing a set of less homogenized and CENP-B box-poor subfamilies located closer to the short arm of the chromosome. Continuous alphoid fragment of 100 monomers bordering the non-satellite sequences in human chromosome 21 was mapped to the pericentromeric short arm region by fluorescence in situ hybridization (alpha21-II locus). The alphoid sequence contained several rearrangements including five large deletions within monomers and insertions of three truncated L1 elements. No binding sites for centromeric protein CENP-B were found. We analyzed sequences with alphoid/non-alphoid junctions selectively screened from current databases and revealed various rearrangements disrupting the regular tandem alphoid structure, namely, deletions, duplications, inversions, expansions of short oligonucleotide motifs and insertions of different dispersed elements. The detailed analysis of more than 1100 alphoid monomers from junction regions showed that the vast majority of structural alterations and joinings with non-alphoid DNAs occur in alpha satellite families lacking CENP-B boxes. Most analyzed events were found in sequences located toward the edges of the centromeric alphoid arrays. Different dispersed elements were inserted into alphoid DNA at kinkable dinucleotides (TG, CA or TA) situated between pyrimidine/purine tracks. DNA rearrangements resulting from different processes such as recombination and replication occur at kinkable DNA sites alike insertions but irrespectively of the occurrence of pyrimidine/purine tracks. It seems that kinkable dinucleotides TG, CA and TA are part of recognition signals for many proteins involved in recombination, replication, and insertional events. Alphoid DNA is a good model for studying these processes.  相似文献   

13.

Background

Characterizing the biogeography of the microbiome of healthy humans is essential for understanding microbial associated diseases. Previous studies mainly focused on a single body habitat from a limited set of subjects. Here, we analyzed one of the largest microbiome datasets to date and generated a biogeographical map that annotates the biodiversity, spatial relationships, and temporal stability of 22 habitats from 279 healthy humans.

Results

We identified 929 genera from more than 24 million 16S rRNA gene sequences of 22 habitats, and we provide a baseline of inter-subject variation for healthy adults. The oral habitat has the most stable microbiota with the highest alpha diversity, while the skin and vaginal microbiota are less stable and show lower alpha diversity. The level of biodiversity in one habitat is independent of the biodiversity of other habitats in the same individual. The abundances of a given genus at a body site in which it dominates do not correlate with the abundances at body sites where it is not dominant. Additionally, we observed the human microbiota exhibit both cosmopolitan and endemic features. Finally, comparing datasets of different projects revealed a project-based clustering pattern, emphasizing the significance of standardization of metagenomic studies.

Conclusions

The data presented here extend the definition of the human microbiome by providing a more complete and accurate picture of human microbiome biogeography, addressing questions best answered by a large dataset of subjects and body sites that are deeply sampled by sequencing.  相似文献   

14.

Background

Psoriasis and atopic dermatitis (AD) are chronic inflammatory skin diseases, which negatively influence the quality of life. In the last years, several evidences highlighted the pivotal role of skin bacteria in worsening the symptomatology of AD and psoriasis. In the present study we evaluated the skin microbiota composition in accurately selected subjects affected by (AD) and psoriasis.

Methods

Three first cousins were chosen for the study according to strict selection of criteria. One subject was affected by moderate AD, one had psoriasis and the last one was included as healthy control. Two lesional skin samples and two non-lesional skin samples (for AD and psoriatic subjects) from an area of 2 cm2 behind the left ear were withdrawn by mean of a curette. For the healthy control, two skin samples from an area of 2 cm2 behind the left ear were withdrawn by mean of a curette. DNA was extracted and sequencing was completed on the Ion Torrent PGM platform. Culturing of Staphylococcus aureus from skin samples was also performed.

Results

The psoriatic subject showed a decrease in Firmicutes abundance and an increase in Proteobacteria abundance. Moreover, an increase in Streptococcaceae, Rhodobacteraceae, Campylobacteraceae and Moraxellaceae has been observed in psoriatic subject, if compared with AD individual and control. Finally, AD individual showed a larger abundance of S. aureus than psoriatic and healthy subjects. Moreover, the microbiota composition of non-lesional skin samples belonging to AD and psoriatic individuals was very similar to the bacterial composition of skin sample belonging to the healthy control.

Conclusion

Significant differences between the skin microbiota of psoriatic individual and healthy and AD subjects were observed.
  相似文献   

15.
Seborrheic dermatitis (SD) is a chronic inflammatory dermatologic condition in which erythema and itching develop on areas of the body with sebaceous glands, such as the scalp, face and chest. The inflammation is evoked directly by oleic acid, which is hydrolyzed from sebum by lipases secreted by skin microorganisms. Although the skin fungal genus, Malassezia, is thought to be the causative agent of SD, analysis of the bacterial microbiota of skin samples of patients with SD is necessary to clarify any association with Malassezia because the skin microbiota comprises diverse bacterial and fungal genera. In the present study, bacterial microbiotas were analyzed at non‐lesional and lesional sites of 24 patients with SD by pyrosequencing and qPCR. Principal coordinate analysis revealed clear separation between the microbiota of non‐lesional and lesional sites. Acinetobacter, Corynebacterium, Staphylococcus, Streptococcus and Propionibacterium were abundant at both sites. Propionibacterium was abundant at non‐lesional sites, whereas Acinetobacter, Staphylococcus and Streptococcus predominated at lesional sites; however, the extent of Propionibacterium colonization did not differ significantly between lesional and non‐lesional sites according to qPCR. Given that these abundant bacteria hydrolyze sebum, they may also contribute to SD development. To the best of our knowledge, this is the first comprehensive analysis of the bacterial microbiotas of the skin of SD patients.  相似文献   

16.
The shufflon of plasmid R64 consists of four DNA segments separated and flanked by seven sfx recombination sites. Rci-mediated recombination between any inverted sfx sequences causes inversion of the DNA segments independently or in groups. The R64 shufflon selects one of seven pilV genes encoding type IV pilus adhesins, in which the N-terminal region is constant, while the C-terminal regions are variable. The R64 sfx sequences are asymmetric. The sfx central region and right arm sequences are conserved, but left arm sequences are not. Here we constructed a symmetric sfx sequence, in which the sfx left arm sequence was changed to the inverted repeat of the right arm sequence and made artificial shufflon segments carrying symmetric sfx sequences in inverted or direct orientations. The symmetric sfx sequence exhibited the highest inversion frequency in a shufflon segment flanked by two inverted sfx sequences. Rci-dependent deletion of a shufflon segment flanked by two direct symmetric sfx sequences was observed, suggesting that asymmetry of R64 sfx sequences inhibits recombination between direct sfx sequences. In addition, intermolecular recombination between symmetric sfx sequences was also observed. The extra C-terminal domain of Rci was shown to be essential for inversion of the R64 shufflon using asymmetric sfx sequences but not essential for recombination using symmetric sfx sequences, suggesting that the Rci C-terminal segment helps the binding of Rci to asymmetric sfx sequences. Rci protein lacking the C-terminal domain bound to both arms of symmetric sfx sequence but only to the right arm of asymmetric sfx sequence.  相似文献   

17.
The vaginal bacterial microbiota of 19 premenopausal women was examined by PCR-denaturing gradient gel electrophoresis (DGGE) and sequencing of the V2-V3 region of the 16S rRNA gene. Ten of the women were studied further to investigate the effect and persistence of vaginally inserted capsules containing viable lactobacilli. PCR-DGGE indicated that most subjects had a microbiota represented by one to three dominant DNA fragments. Analysis of these fragments revealed that 79% of the women possessed sequences with high levels of similarity to Lactobacillus species sequences. Sequences homologous to Lactobacillus iners sequences were the most common and were detected in 42% of the women tested. Alteration of the vaginal microbiota could be detected by PCR-DGGE in several women after the instillation of lactobacilli. Additionally, randomly amplified polymorphic DNA analysis of lactobacilli isolated from selective media demonstrated that the exogenous strains could be detected for up to 21 days in some subjects. This study demonstrates that non-culture-based techniques, such as PCR-DGGE, are useful adjuncts for studies of the vaginal microbiota.  相似文献   

18.
19.
20.
Analysis of the large bowel microbiota of colitic mice using PCR/DGGE   总被引:1,自引:0,他引:1  
AIM: To test combined polymerase chain reaction amplification of 16S rRNA gene sequences and denaturing gradient gel electrophoresis (PCR/DGGE) as an analytical method to investigate the composition of the large bowel microbiota of mice during the development of colitis. METHODS AND RESULTS: The colonic microbiota of formerly germfree interleukin 10 (IL-10)-deficient mice that had been exposed to the faecal microbiota of specific pathogen-free animals was screened using PCR/DGGE. The composition of the large bowel microbiota of IL-10-deficient mice changed as colitis progressed. DNA fragments originating from four bacterial populations ('Bacteroides sp.', Bifidobacterium animalis, Clostridium cocleatum, enterococci) were more apparent in PCR/DGGE profiles of colitic mice relative to non-colitic animals, whereas two populations were less apparent (Eubacterium ventriosum, Acidophilus group lactobacilli). Specific DNA:RNA dot blot analysis showed that bifidobacterial ribosomal RNA (rRNA) abundance increased as colitis developed. CONCLUSIONS: PCR/DGGE was shown to be an effective method to demonstrate changes in the composition of the large bowel microbiota of mice in relation to progression of inflammatory disease. The intensity of staining of DNA fragments in DGGE profiles reflected increased abundance of bifidobacterial rRNA in the microbiota of colitic animals. As bifidobacterial fragments in PCR/DGGE profiles generated from microbiota DNA showed increased intensity of fragment staining, an increase in bifidobacterial numbers in colitic mice was indicated. SIGNIFICANCE AND IMPACT OF THE STUDY: PCR/DGGE analysis demonstrated an altered composition of the large bowel microbiota of colitic mice. This work will allow specific groups of bacteria to be targeted in future research concerning the pathogenesis of colitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号