首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bardet-Biedl syndrome (BBS) is an uncommon multisystemic disorder characterized primarily by retinal dystrophy, obesity, polydactyly, and renal dysfunction. BBS has been modeled historically as an autosomal recessive trait, under which premise six independent BBS loci (BBS1-BBS6) have been mapped in the human genome. However, extended mutational analyses of BBS2 and BBS6, the first two BBS genes cloned, suggest that BBS exhibits a more complex pattern of inheritance, in which three mutations at two loci simultaneously are necessary and sufficient in some families to manifest the phenotype. We evaluated the spectrum of mutations in the recently identified BBS4 gene with a combination of haplotype analysis and mutation screening on a multiethnic cohort of 177 families. Consistent with predictions from previous genetic analyses, our data suggest that mutations in BBS4 contribute to BBS in <3% of affected families. Furthermore, integrated mutational data from all three currently cloned BBS genes raise the possibility that BBS4 may participate in triallelic inheritance with BBS2 and BBS1, but not the other known loci. Establishment of the loci pairing in triallelism is likely to be important for the elucidation of the functional relationships among the different BBS proteins.  相似文献   

2.
Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder characterized by central obesity, mental impairment, rod-cone dystrophy, polydactyly, hypogonadism in males, and renal abnormalities. The causative genes have been identified as BBS1-19. In Western countries, this disease is often reported, but remains undiagnosed in many patients until later in life, while only a few patients with no mutations identified have been reported in Japan. We thus conducted the first nationwide survey of BBS in Japan by sending questionnaires to 2,166 clinical departments with board-certified specialists and found 7 patients with clinically definite BBS. We performed exome analyses combined with analyses of mRNA and protein in these patients. We identified 2 novel mutations in the BBS5 gene (p.R89X and IVS7-27 T>G) in 2 sibling patients. The latter mutation that resided far from the authentic splicing site was associated with skipping of exon 8. We also found 3 previously reported mutations in the BBS2 (p.R413X and p.R480X) and BBS7 (p.C243Y) genes in 2 patients. To our knowledge, a nationwide survey of BBS has not been reported in any other country. In addition, this is the first study to identify genetic alterations in Japanese patients with BBS. Our results indicate that BBS in Japan is genetically heterogeneous and at least partly shares genetic features with BBS in other countries.  相似文献   

3.
Bardet–Biedl syndrome (BBS), an emblematic disease in the rapidly evolving field of ciliopathies, is characterized by pleiotropic clinical features and extensive genetic heterogeneity. To date, 14 BBS genes have been identified, 3 of which have been found mutated only in a single BBS family each (BBS11/TRIM32, BBS13/MKS1 and BBS14/MKS4/NPHP6). Previous reports of systematic mutation detection in large cohorts of BBS families (n > 90) have dealt only with a single gene, or at most small subsets of the known BBS genes. Here we report extensive analysis of a cohort of 174 BBS families for 12/14 genes, leading to the identification of 28 novel mutations. Two pathogenic mutations in a single gene have been found in 117 families, and a single heterozygous mutation in 17 families (of which 8 involve the BBS1 recurrent mutation, M390R). We confirm that BBS1 and BBS10 are the most frequently mutated genes, followed by BBS12. No mutations have been found in BBS11/TRIM32, the identification of which as a BBS gene only relies on a single missense mutation in a single consanguineous family. While a third variant allele has been observed in a few families, they are in most cases missenses of uncertain pathogenicity, contrasting with the type of mutations observed as two alleles in a single gene. We discuss the various strategies for diagnostic mutation detection, including homozygosity mapping and targeted arrays for the detection of previously reported mutations.  相似文献   

4.
Bardet-Biedl syndrome (BBS) has been shown to be a genetically heterogeneous disorder involving genes mapping to at least six known loci. One BBS gene (MKKS) has been identified and the form of the disorder caused by this gene is allelic to McKusick-Kaufman syndrome. MKKS codes for a putative chaperonin, suggesting that other BBS genes may also code for components of chaperone complexes or be substrates of chaperone function.  相似文献   

5.
6.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic human disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS loci have been mapped, and seven genes have been identified. BBS3 was previously mapped to chromosome 3 by linkage analysis in a large Israeli Bedouin kindred. The rarity of other families mapping to the BBS3 locus has made it difficult to narrow the disease interval sufficiently to identify the gene by positional cloning. We hypothesized that the genomes of model organisms that contained the orthologues to known BBS genes would also likely contain a BBS3 orthologue. Therefore, comparative genomic analysis was performed to prioritize BBS candidate genes for mutation screening. Known BBS proteins were compared with the translated genomes of model organisms to identify a subset of organisms in which these proteins were conserved. By including multiple organisms that have relatively small genome sizes in the analysis, the number of candidate genes was reduced, and a few genes mapping to the BBS3 interval emerged as the best candidates for this disorder. One of these genes, ADP-ribosylation factor-like 6 (ARL6), contains a homozygous stop mutation that segregates completely with the disease in the Bedouin kindred originally used to map the BBS3 locus, identifying this gene as the BBS3 gene. These data illustrate the power of comparative genomic analysis for the study of human disease and identifies a novel BBS gene.  相似文献   

7.
8.
Molecular mechanisms of genetic adaptation to xenobiotic compounds.   总被引:55,自引:0,他引:55       下载免费PDF全文
Microorganisms in the environment can often adapt to use xenobiotic chemicals as novel growth and energy substrates. Specialized enzyme systems and metabolic pathways for the degradation of man-made compounds such as chlorobiphenyls and chlorobenzenes have been found in microorganisms isolated from geographically separated areas of the world. The genetic characterization of an increasing number of aerobic pathways for degradation of (substituted) aromatic compounds in different bacteria has made it possible to compare the similarities in genetic organization and in sequence which exist between genes and proteins of these specialized catabolic routes and more common pathways. These data suggest that discrete modules containing clusters of genes have been combined in different ways in the various catabolic pathways. Sequence information further suggests divergence of catabolic genes coding for specialized enzymes in the degradation of xenobiotic chemicals. An important question will be to find whether these specialized enzymes evolved from more common isozymes only after the introduction of xenobiotic chemicals into the environment. Evidence is presented that a range of genetic mechanisms, such as gene transfer, mutational drift, and genetic recombination and transposition, can accelerate the evolution of catabolic pathways in bacteria. However, there is virtually no information concerning the rates at which these mechanisms are operating in bacteria living in nature and the response of such rates to the presence of potential (xenobiotic) substrates. Quantitative data on the genetic processes in the natural environment and on the effect of environmental parameters on the rate of evolution are needed.  相似文献   

9.
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder characterized primarily by obesity, polydactyly, retinal dystrophy, and renal disease. The significant genetic and clinical heterogeneity of this condition have substantially hindered efforts to positionally clone the numerous BBS genes, because the majority of available pedigrees are small and the disorder cannot be assigned to any of the six known BBS loci. Consequently, the delineation of critical BBS intervals, which would accelerate the discovery of the underlying genetic defect(s), becomes difficult, especially for loci with minor contributions to the syndrome. We have collected a cohort of 163 pedigrees from diverse ethnic backgrounds and have evaluated them for mutations in the recently discovered BBS6 gene (MKKS) on chromosome 20 and for potential assignment of the disorder to any of the other known BBS loci in the human genome. Using a combination of mutational and haplotype analysis, we describe the spectrum of BBS6 alterations that are likely to be pathogenic; propose substantially reduced critical intervals for BBS2, BBS3, and BBS5; and present evidence for the existence of at least one more BBS locus. Our data also suggest that BBS6 is a minor contributor to the syndrome and that some BBS6 alleles may act in conjunction with mutations at other BBS loci to cause or modify the BBS phenotype.  相似文献   

10.
Bardet-Biedl syndrome (BBS) is a rare, primarily autosomal-recessive ciliopathy. The phenotype of this pleiotropic disease includes retinitis pigmentosa, postaxial polydactyly, truncal obesity, learning disabilities, hypogonadism and renal anomalies, among others. To date, mutations in 15 genes (BBS1-BBS14, SDCCAG8) have been described to cause BBS. The broad genetic locus heterogeneity renders mutation screening time-consuming and expensive. We applied a strategy of DNA pooling and subsequent massively parallel resequencing (MPR) to screen individuals affected with BBS from 105 families for mutations in 12 known BBS genes. DNA was pooled in 5 pools of 21 individuals each. All 132 coding exons of BBS1-BBS12 were amplified by conventional PCR. Subsequent MPR was performed on an Illumina Genome Analyzer II? platform. Following mutation identification, the mutation carrier was assigned by CEL I endonuclease heteroduplex screening and confirmed by Sanger sequencing. In 29 out of 105 individuals (28%), both mutated alleles were identified in 10 different BBS genes. A total of 35 different disease-causing mutations were confirmed, of which 18 mutations were novel. In 12 additional families, a total of 12 different single heterozygous changes of uncertain pathogenicity were found. Thus, DNA pooling combined with MPR offers a valuable strategy for mutation analysis of large patient cohorts, especially in genetically heterogeneous diseases such as BBS.  相似文献   

11.
Hybrids between closely related species are often sterile or inviable as a consequence of failed interactions between alleles from the different species. Most genetic studies have focused on localizing the alleles associated with these failed interactions, but the mechanistic/biochemical nature of the failed interactions is poorly understood. This review discusses recent studies that may contribute to our understanding of these failed interactions. We focus on the possible contribution of failures in gene expression as an important contributor to hybrid dysfunctions. Although regulatory pathways that share elements in highly divergent taxa may contribute to hybrid dysfunction, various studies suggest that misexpression may be disproportionately great in regulatory pathways containing rapidly evolving, particularly male-biased, genes. We describe three systems that have been analyzed recently with respect to global patterns of gene expression in hybrids versus pure species, each in Drosophila. These studies reveal that quantitative misexpression of genes is associated with hybrid dysfunction. Misexpression of genes has been documented in sterile hybrids relative to pure species, and variation in upstream factors may sometimes cause the over- or under-expression of genes resulting in hybrid sterility or inviability. Studying patterns of evolution between species in regulatory pathways, such as spermatogenesis, should help in identifying which genes are more likely to be contributors to hybrid dysfunction. Ultimately, we hope more functional genetic studies will complement our understanding of the genetic disruptions leading to hybrid dysfunctions and their role in the origin of species.  相似文献   

12.
Bier E  Bodmer R 《Gene》2004,342(1):1-11
A variety of studies that are currently underway may validate the fruit fly as an in vivo model for analyzing genes involved in cardiac function. Many mutations in conserved genetic pathways have been found, including those controlling development and physiology. Because homologous genes control early developmental events as well as functional components of the Drosophila and vertebrate hearts, the fly is the simplest existing model system that can be used to assay genes involved in human congenital heart disease (CHD). The wide variety of genetic tools available to Drosophila researchers offers many technical advantages for rapidly screening through large numbers of candidate genes. Thus, an important future and long-term direction is likely to be the use of Drosophila as a vehicle for analyzing polygenic traits as an aid in human genetics. One can anticipate a time in the not too distant future when mutant lines exist for every gene in vertebrate systems, such as mice and zebrafish. However, one of the enduring problems that will not easily be addressed by such resources will be the tracking of complex traits defined by polygenic variants. For this level of genetic analysis, simple genetic model systems including yeast, Caenorhabditis elegans, and Drosophila melanogaster will undoubtedly play a crucial ongoing role. Of them, Drosophila will be critical for examining gene networks involved in organogenesis and is clearly the system of choice for studying cardiac development, function and aging, since among the simple genetic models it is the only one with a fluid pumping heart.  相似文献   

13.
Bardet-Biedl syndrome (BBS) is a multisystemic disorder characterized by postaxial polydactyly, progressive retinal dystrophy, obesity, hypogonadism, renal dysfunction, and learning difficulty. Other manifestations include diabetes mellitus, heart disease, hepatic fibrosis, and neurological features. The condition is genetically heterogeneous, and eight genes (BBS1-BBS8) have been identified to date. A mutation of the BBS1 gene on chromosome 11q13 is observed in 30%-40% of BBS cases. In addition, a complex triallelic inheritance has been established in this disorder--that is, in some families, three mutations at two BBS loci are necessary for the disease to be expressed. The clinical features of BBS that can be observed at birth are polydactyly, kidney anomaly, hepatic fibrosis, and genital and heart malformations. Interestingly, polydactyly, cystic kidneys, and liver anomalies (hepatic fibrosis with bile-duct proliferation) are also observed in Meckel syndrome, along with occipital encephalocele. Therefore, we decided to sequence the eight BBS genes in a series of 13 antenatal cases presenting with cystic kidneys and polydactyly and/or hepatic fibrosis but no encephalocele. These fetuses were mostly diagnosed as having Meckel or "Meckel-like" syndrome. In six cases, we identified a recessive mutation in a BBS gene (three in BBS2, two in BBS4, and one in BBS6). We found a heterozygous BBS6 mutation in three additional cases. No BBS1, BBS3, BBS5, BBS7, or BBS8 mutations were identified in our series. These results suggest that the antenatal presentation of BBS may mimic Meckel syndrome.  相似文献   

14.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder, the primary features of which include obesity, retinal dystrophy, polydactyly, hypogenitalism, learning difficulties, and renal malformations. Conventional linkage and positional cloning have led to the mapping of six BBS loci in the human genome, four of which (BBS1, BBS2, BBS4, and BBS6) have been cloned. Despite these advances, the protein sequences of the known BBS genes have provided little or no insight into their function. To delineate functionally important regions in BBS2, we performed phylogenetic and genomic studies in which we used the human and zebrafish BBS2 peptide sequences to search dbEST and the translation of the draft human genome. We identified two novel genes that we initially named "BBS2L1" and "BBS2L2" and that exhibit modest similarity with two discrete, overlapping regions of BBS2. In the present study, we demonstrate that BBS2L1 mutations cause BBS, thereby defining a novel locus for this syndrome, BBS7, whereas BBS2L2 has been shown independently to be BBS1. The motif-based identification of a novel BBS locus has enabled us to define a potential functional domain that is present in three of the five known BBS proteins and, therefore, is likely to be important in the pathogenesis of this complex syndrome.  相似文献   

15.
Lee BH  Liu J  Wong D  Srinivasan S  Ashrafi K 《PLoS biology》2011,9(12):e1001219
Bardet-Biedl syndrome, BBS, is a rare autosomal recessive disorder with clinical presentations including polydactyly, retinopathy, hyperphagia, obesity, short stature, cognitive impairment, and developmental delays. Disruptions of BBS proteins in a variety of organisms impair cilia formation and function and the multi-organ defects of BBS have been attributed to deficiencies in various cilia-associated signaling pathways. In C. elegans, bbs genes are expressed exclusively in the sixty ciliated sensory neurons of these animals and bbs mutants exhibit sensory defects as well as body size, feeding, and metabolic abnormalities. Here we show that in contrast to many other cilia-defective mutants, C. elegans bbs mutants exhibit increased release of dense-core vesicles and organism-wide phenotypes associated with enhanced activities of insulin, neuropeptide, and biogenic amine signaling pathways. We show that the altered body size, feeding, and metabolic abnormalities of bbs mutants can be corrected to wild-type levels by abrogating the enhanced secretion of dense-core vesicles without concomitant correction of ciliary defects. These findings expand the role of BBS proteins to the regulation of dense-core-vesicle exocytosis and suggest that some features of Bardet-Biedl Syndrome may be caused by excessive neuroendocrine secretion.  相似文献   

16.
Bardet-Biedl syndrome (BBS) is an autosomal recessive, genetically heterogeneous, pleiotropic human disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS genes representing all known mapped loci have been identified. Mutation analysis of the known BBS genes in BBS patients indicate that additional BBS genes exist and/or that unidentified mutations exist in the known genes. To identify new BBS genes, we performed homozygosity mapping of small, consanguineous BBS pedigrees, using moderately dense SNP arrays. A bioinformatics approach combining comparative genomic analysis and gene expression studies of a BBS-knockout mouse model was used to prioritize BBS candidate genes within the newly identified loci for mutation screening. By use of this strategy, parathyroid hormone-responsive gene B1 (B1) was found to be a novel BBS gene (BBS9), supported by the identification of homozygous mutations in BBS patients. The identification of BBS9 illustrates the power of using a combination of comparative genomic analysis, gene expression studies, and homozygosity mapping with SNP arrays in small, consanguineous families for the identification of rare autosomal recessive disorders. We also demonstrate that small, consanguineous families are useful in identifying intragenic deletions. This type of mutation is likely to be underreported because of the difficulty of deletion detection in the heterozygous state by the mutation screening methods that are used in many studies.  相似文献   

17.
Primary cilium dysfunction underlies the pathogenesis of Bardet-Biedl syndrome (BBS), a genetic disorder whose symptoms include obesity, retinal degeneration, and nephropathy. However, despite the identification of 12 BBS genes, the molecular basis of BBS remains elusive. Here we identify a complex composed of seven highly conserved BBS proteins. This complex, the BBSome, localizes to nonmembranous centriolar satellites in the cytoplasm but also to the membrane of the cilium. Interestingly, the BBSome is required for ciliogenesis but is dispensable for centriolar satellite function. This ciliogenic function is mediated in part by the Rab8 GDP/GTP exchange factor, which localizes to the basal body and contacts the BBSome. Strikingly, Rab8(GTP) enters the primary cilium and promotes extension of the ciliary membrane. Conversely, preventing Rab8(GTP) production blocks ciliation in cells and yields characteristic BBS phenotypes in zebrafish. Our data reveal that BBS may be caused by defects in vesicular transport to the cilium.  相似文献   

18.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous recessive disease characterized primarily by atypical retinitis pigmentosa, obesity, polydactyly, hypogenitalism, and mental retardation. Despite the presence of at least five loci in the human genome, on chromosomes 2q, 3p, 11q, 15q and 16q, as many as 50% of the mutations appear to map to the BBS1 locus on 11q13. The recessive mode of inheritance and the genetic heterogeneity of the syndrome, as well as the inability to distinguish between different genetic loci by phenotypic analyses, have hindered efforts to delineate the 11q13 region as a first step toward cloning the mutated gene. To circumvent these difficulties, we collected a large number of BBS pedigrees of primarily North American and European origin and performed genetic analysis, using microsatellites from all known BBS genomic regions. Heterogeneity analysis established a 40.5% contribution of the 11q13 locus to BBS, and haplotype construction on 11q-linked pedigrees revealed several informative recombinants, defining the BBS1 critical interval between D11S4205 and D11S913, a genetic distance of 2.9 cM, equivalent to approximately 2.6 Mb. Loss of identity by descent in two consanguineous pedigrees was also observed in the region, potentially refining the region to 1.8 Mb between D11S1883 and D11S4944. The identification of multiple recombinants at the same position forms the basis for physical mapping efforts, coupled with mutation analysis of candidate genes, to identify the gene for BBS1.  相似文献   

19.
Diseases such as obesity, diabetes, and atherosclerosis result from multiple genetic and environmental factors, and importantly, interactions between genetic and environmental factors. Identifying susceptibility genes for these diseases using genetic and genomic technologies is accelerating, and the expectation over the next several years is that a number of genes will be identified for common diseases. However, the identification of single genes for disease has limited utility, given that diseases do not originate in complex systems from single gene changes. Further, the identification of single genes for disease may not lead directly to genes that can be targeted for therapeutic intervention. Therefore, uncovering single genes for disease in isolation of the broader network of molecular interactions in which they operate will generally limit the overall utility of such discoveries. Several integrative approaches have been developed and applied to reconstructing networks. Here we review several of these approaches that involve integrating genetic, expression, and clinical data to elucidate networks underlying disease. Networks reconstructed from these data provide a richer context in which to interpret associations between genes and disease. Therefore, these networks can lead to defining pathways underlying disease more objectively and to identifying biomarkers and more-robust points for therapeutic intervention.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号