共查询到20条相似文献,搜索用时 8 毫秒
1.
Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5 总被引:2,自引:0,他引:2
The WD40 repeat protein WDR5 specifically associates with the K4-methylated histone H3 in human cells. To investigate the structural basis for this specific recognition, we have determined the structure of WDR5 in complex with a dimethylated H3-K4 peptide at 1.9 A resolution. Unlike the chromodomain that recognizes the methylated H3-K4 through a hydrophobic cage, the specificity of WDR5 for methylated H3-K4 is conferred by the nonconventional hydrogen bonds between the two zeta-methyl groups of the dimethylated Lys4 and the carboxylate oxygen of Glu322 in WDR5. The three amino acids Ala-Arg-Thr preceding Lys4 form most of the specific contacts with WDR5, with Ala1 forming intermolecular hydrogen bonds and salt bridges, and the side chain of Arg2 inserting into the central channel of WDR5. Both structural and biochemical studies presented here suggest another mode of recognition for the methylated histone tail. 相似文献
2.
Schuetz A Allali-Hassani A Martín F Loppnau P Vedadi M Bochkarev A Plotnikov AN Arrowsmith CH Min J 《The EMBO journal》2006,25(18):4245-4252
Histone methylation at specific lysine residues brings about various downstream events that are mediated by different effector proteins. The WD40 domain of WDR5 represents a new class of histone methyl-lysine recognition domains that is important for recruiting H3K4 methyltransferases to K4-dimethylated histone H3 tail as well as for global and gene-specific K4 trimethylation. Here we report the crystal structures of full-length WDR5, WDR5Delta23 and its complexes with unmodified, mono-, di- and trimethylated histone H3K4 peptides. The structures reveal that WDR5 is able to bind all of these histone H3 peptides, but only H3K4me2 peptide forms extra interactions with WDR5 by use of both water-mediated hydrogen bonding and the altered hydrophilicity of the modified lysine 4. We propose a mechanism for the involvement of WDR5 in binding and presenting histone H3K4 for further methylation as a component of MLL complexes. 相似文献
3.
WDR5 is a component of the mixed lineage leukemia (MLL) complex, which methylates lysine 4 of histone H3, and was identified as a methylated Lys-4 histone H3-binding protein. Here, we present a crystal structure of WDR5 bound to an MLL peptide. Surprisingly, we find that WDR5 utilizes the same pocket shown to bind histone H3 for this MLL interaction. Furthermore, the WDR5-MLL interaction is disrupted preferentially by mono- and di-methylated Lys-4 histone H3 over unmodified and tri-methylated Lys-4 histone H3. These data implicate a delicate interplay between the effector, WDR5, the catalytic subunit, MLL, and the substrate, histone H3, of the MLL complex. We suggest that the activity of the MLL complex might be regulated through this interplay. 相似文献
4.
5.
Molecular basis of histone H3K4me3 recognition by ING4 总被引:1,自引:0,他引:1
Palacios A Muñoz IG Pantoja-Uceda D Marcaida MJ Torres D Martín-García JM Luque I Montoya G Blanco FJ 《The Journal of biological chemistry》2008,283(23):15956-15964
6.
7.
Shuangping Zheng Yucong Bi Haining Chen Bo Gong Shunji Jia Haitao Li 《Nucleic acids research》2021,49(15):8961
Histone recognition constitutes a key epigenetic mechanism in gene regulation and cell fate decision. PHF14 is a conserved multi-PHD finger protein that has been implicated in organ development, tissue homeostasis, and tumorigenesis. Here we show that PHF14 reads unmodified histone H3(1–34) through an integrated PHD1-ZnK-PHD2 cassette (PHF14PZP). Our binding, structural and HDX-MS analyses revealed a feature of bipartite recognition, in which PHF14PZP utilizes two distinct surfaces for concurrent yet separable engagement of segments H3-Nter (e.g. 1–15) and H3-middle (e.g. 14–34) of H3(1–34). Structural studies revealed a novel histone H3 binding mode by PHD1 of PHF14PZP, in which a PHF14-unique insertion loop but not the core β-strands of a PHD finger dominates H3K4 readout. Binding studies showed that H3-PHF14PZP engagement is sensitive to modifications occurring to H3 R2, T3, K4, R8 and K23 but not K9 and K27, suggesting multiple layers of modification switch. Collectively, our work calls attention to PHF14 as a ‘ground’ state (unmodified) H3(1–34) reader that can be negatively regulated by active marks, thus providing molecular insights into a repressive function of PHF14 and its derepression. 相似文献
8.
Niedzialkowska E Wang F Porebski PJ Minor W Higgins JM Stukenberg PT 《Molecular biology of the cell》2012,23(8):1457-1466
Survivin, a subunit of the chromosome passenger complex (CPC), binds the N-terminal tail of histone H3, which is phosphorylated on T3 by Haspin kinase, and localizes the complex to the inner centromeres. We used x-ray crystallography to determine the residues of Survivin that are important in binding phosphomodified histone H3. Mutation of amino acids that interact with the histone N-terminus lowered in vitro tail binding affinity and reduced CPC recruitment to the inner centromere in cells, validating our solved structures. Phylogenetic analysis shows that nonmammalian vertebrates have two Survivin paralogues, which we name class A and B. A distinguishing feature of these paralogues is an H-to-R change in an amino acid that interacts with the histone T3 phosphate. The binding to histone tails of the human class A paralogue, which has a histidine at this position, is sensitive to changes around physiological pH, whereas Xenopus Survivin class B is less so. Our data demonstrate that Survivin paralogues have different characteristics of phosphospecific binding to threonine-3 of histone H3, providing new insight into the biology of the inner centromere. 相似文献
9.
10.
A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis 下载免费PDF全文
Chromatin-based silencing provides a crucial mechanism for the regulation of gene expression. We have identified a WD40 domain cyclophilin, CYCLOPHILIN71 (CYP71), which functions in gene repression and organogenesis in Arabidopsis thaliana. Disruption of CYP71 resulted in ectopic activation of homeotic genes that regulate meristem development. The cyp71 mutant plants displayed dramatic defects, including reduced apical meristem activity, delayed and abnormal lateral organ formation, and arrested root growth. CYP71 was associated with the chromatin of target gene loci and physically interacted with histone H3. The cyp71 mutant showed reduced methylation of H3K27 at target loci, consistent with the derepression of these genes in the mutant. As CYP71 has close homologs in eukaryotes ranging from fission yeast to human, we propose that it serves as a highly conserved histone remodeling factor involved in chromatin-based gene silencing in eukaryotic organisms. 相似文献
11.
《遗传学报》2021,48(6):463-472
Centromeres are chromosomal loci marked by histone variant Cen H3(centromeric histone H3) and essential for genomic stability and cell division. The budding yeast E3 ubiquitin ligase Psh1 selectively recognizes the yeast Cen H3(Cse4) for ubiquitination and controls the cellular level of Cse4 for proteolysis,but the underlying mechanism remains largely unknown. Here, we show that Psh1 uses a Cse4-binding domain(CBD, residues 1-211) to interact with Cse4-H4 instead of H3-H4, yielding a dissociation constant(K_d) of 27 nM. Psh1 recognizes Cse4-specific residues in the L1 loop and a2 helix to ensure Cse4 binding and ubiquitination. We map the Psh1-binding region of Cse4-H4 and identify a wide range of Cse4-specific residues required for the Psh1-mediated Cse4 recognition and ubiquitination. Further analyses reveal that histone chaperone Scm3 can impair Cse4 ubiquitination by abrogating Psh1-Cse4 binding. Together, our study reveals a novel Cse4-binding mode distinct from those of known Cen H3 chaperones and elucidates the mechanism by which Scm3 competes with Psh1 for Cse4 binding. 相似文献
12.
13.
Jeffrey K. Bailey Alexander T. Fields Kaijian Cheng Albert Lee Eric Wagenaar Remy Lagrois Bailey Schmidt Bin Xia Dzwokai Ma 《The Journal of biological chemistry》2015,290(14):8987-9001
Cytokinesis partitions the cytoplasm of a parent cell into two daughter cells and is essential for the completion of cell division. The final step of cytokinesis in animal cells is abscission, which is a process leading to the physical separation of two daughter cells. Abscission requires membrane traffic and microtubule disassembly at a specific midbody region called the secondary ingression. Here, we report that WD repeat-containing protein 5 (WDR5), a core subunit of COMPASS/MLL family histone H3 lysine 4 methyltransferase (H3K4MT) complexes, resides at the midbody and associates with a subset of midbody regulatory proteins, including PRC1 and CYK4/MKLP1. Knockdown of WDR5 impairs abscission and increases the incidence of multinucleated cells. Further investigation revealed that the abscission delay is primarily due to slower formation of secondary ingressions in WDR5 knockdown cells. Consistent with these defects, midbody microtubules in WDR5 knockdown cells also display enhanced resistance to depolymerization by nocodazole. Recruitment of WDR5 to the midbody dark zone appears to require integrity of the WDR5 central arginine-binding cavity, as mutations that disrupt histone H3 and MLL1 binding to this pocket also abolish the midbody localization of WDR5. Taken together, these data suggest that WDR5 is specifically targeted to the midbody in the absence of chromatin and that it promotes abscission, perhaps by facilitating midbody microtubule disassembly. 相似文献
14.
15.
The structural basis for histone recognition by the histone chaperone nuclear autoantigenic sperm protein (NASP) remains largely unclear. Here, we showed that Arabidopsis thaliana AtNASP is a monomer and displays robust nucleosome assembly activity in vitro. Examining the structure of AtNASP complexed with a histone H3 α3 peptide revealed a binding mode that is conserved in human NASP. AtNASP recognizes the H3 N-terminal region distinct from human NASP. Moreover, AtNASP forms a co-chaperone complex with ANTI-SILENCING FUNCTION 1 (ASF1) by binding to the H3 N-terminal region. Therefore, we deciphered the structure of AtNASP and the basis of the AtNASP–H3 interaction. 相似文献
16.
Forneris F Binda C Dall'Aglio A Fraaije MW Battaglioli E Mattevi A 《The Journal of biological chemistry》2006,281(46):35289-35295
Human lysine-specific demethylase (LSD1) is a chromatin-modifying enzyme that specifically removes methyl groups from mono- and dimethylated Lys4 of histone H3 (H3-K4). We used a combination of in vivo and in vitro experiments to characterize the substrate specificity and recognition by LSD1. Biochemical assays on histone peptides show that essentially all epigenetic modifications on the 21 N-terminal amino acids of histone H3 cause a significant reduction in enzymatic activity. Replacement of Lys4 with Arg greatly enhances binding affinity, and a histone peptide incorporating this mutation has a strong inhibitory power. Conversely, a peptide bearing a trimethylated Lys4 is only a weak inhibitor of the enzyme. Rapid kinetics measurements evidence that the enzyme is efficiently reoxidized by molecular oxygen with a second-order rate constant of 9.6x10(3) M-1 s-1, and that the presence of the reaction product does not greatly influence the rate of flavin reoxidation. In vivo experiments provide a correlation between the in vitro inhibitory properties of the tested peptides and their ability of affecting endogenous LSD1 activity. Our results show that epigenetic modifications on histone H3 need to be removed before Lys4 demethylation can efficiently occur. The complex formed by LSD1 with histone deacetylases 1/2 may function as a "double-blade razor" that first eliminates the acetyl groups from acetylated Lys residues and then removes the methyl group from Lys4. We suggest that after H3-K4 demethylation, LSD1 recruits the forthcoming chromatin remodelers leading to the introduction of gene repression marks. 相似文献
17.
The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p 总被引:9,自引:0,他引:9 下载免费PDF全文
Owen DJ Ornaghi P Yang JC Lowe N Evans PR Ballario P Neuhaus D Filetici P Travers AA 《The EMBO journal》2000,19(22):6141-6149
The bromodomain is an approximately 110 amino acid module found in histone acetyltransferases and the ATPase component of certain nucleosome remodelling complexes. We report the crystal structure at 1.9 A resolution of the Saccharomyces cerevisiae Gcn5p bromodomain complexed with a peptide corresponding to residues 15-29 of histone H4 acetylated at the zeta-N of lysine 16. We show that this bromodomain preferentially binds to peptides containing an N:-acetyl lysine residue. Only residues 16-19 of the acetylated peptide interact with the bromodomain. The primary interaction is the N:-acetyl lysine binding in a cleft with the specificity provided by the interaction of the amide nitrogen of a conserved asparagine with the oxygen of the acetyl carbonyl group. A network of water-mediated H-bonds with protein main chain carbonyl groups at the base of the cleft contributes to the binding. Additional side chain binding occurs on a shallow depression that is hydrophobic at one end and can accommodate charge interactions at the other. These findings suggest that the Gcn5p bromodomain may discriminate between different acetylated lysine residues depending on the context in which they are displayed. 相似文献
18.
Häder T Müller S Aguilera M Eulenberg KG Steuernagel A Ciossek T Kühnlein RP Lemaire L Fritsch R Dohrmann C Vetter IR Jäckle H Doane WW Brönner G 《EMBO reports》2003,4(5):511-516
Obesity is a metabolic disorder related to improper control of energy uptake and expenditure, which results in excessive accumulation of body fat. Initial insights into the genetic pathways that regulate energy metabolism have been provided by a discrete number of obesity-related genes that have been identified in mammals. Here, we report the identification of the adipose (adp) gene, the mutation of which causes obesity in Drosophila. Loss of adp activity promotes increased fat storage, which extends the lifespan of mutant flies under starvation conditions. By contrast, adp gain-of-function causes a specific reduction of the fat body in Drosophila. adp encodes an evolutionarily conserved WD40/tetratricopeptide-repeat-domain protein that is likely to represent an intermediate in a novel signalling pathway. 相似文献
19.
Eml5, a novel WD40 domain protein expressed in rat brain 总被引:1,自引:0,他引:1