首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Purple acid phosphatase from sweet potato is a homodimer of 110 kDa. Two forms of the enzyme have been characterized. One contains an Fe–Zn centre similar to that previously reported for red kidney bean purple acid phosphatase. Another isoform, the subject of this work, is the first confirmed example of an Fe–Mn-containing enzyme. Crystals of this protein have been grown from PEG 6000. They have unit-cell parameters a = b = 118.4, c = 287.4 Å and have the symmetry of space group P6522, with one dimer per asymmetric unit. Diffraction data collected using a conventional X-­ray source from a cryocooled crystal extend to 2.90 Å resolution. The three-dimensional structure of the enzyme will provide insight into the coordination of this novel binuclear metal centre.  相似文献   

2.
Human placental alkaline phosphatase is a membrane-anchored protein. Entrapping the enzyme into a reverse micellar vesicle mimics the in vivo conditions and allows examination of the properties of the enzyme. Placental alkaline phosphatase is enzymatically active in Aerosol-OT/isooctane reverse micelles. Substantially different kinetic behavior of the enzyme has been observed in aqueous or reverse micellar systems. In aqueous solution, Mg2+ is a nonessential activator of the enzyme. In the experiments described in the present report Mg2+ was found to be an inhibitor for the enzyme in reverse micelles. This inhibition is presumably due to a time-dependent conformational change of the enzyme molecule, which resulted in a curvature in the recorder tracings of the enzyme assays. The Mg2+-induced conformational change of the enzyme was completely prevented by phosphate and partially reserved by EDTA. High concentrations of Zn2+ also strongly inhibited enzyme activity in both aqueous and reverse micellar solvent systems, presumably by occupying the Mg2+ (M3) site of the enzyme. However, binding of Zn2+ at the M3 site did not cause conformational change of the enzyme and the enzyme assay tracing was linear. The M3 site of the enzyme is proposed to have a modulatory role in vivo using magnesium ion as the modulator.  相似文献   

3.
    
My career in research has flourished through hard work, supportive mentors, and outstanding mentees and collaborators. The Carman laboratory has contributed to the understanding of lipid metabolism through the isolation and characterization of key lipid biosynthetic enzymes as well as through the identification of the enzyme-encoding genes. Our findings from yeast have proven to be invaluable to understand regulatory mechanisms of human lipid metabolism. Several rewarding aspects of my career have been my service to the Journal of Biological Chemistry as an editorial board member and Associate Editor, the National Institutes of Health as a member of study sections, and national and international scientific meetings as an organizer. I advise early career scientists to not assume anything, acknowledge others’ accomplishments, and pay it forward.  相似文献   

4.
Sac family phosphoinositide (PI) phosphatases are an essential family of CX5R(T/S)‐based enzymes, involved in numerous aspects of cellular function such as PI homeostasis, cellular signalling, and membrane trafficking. Genetic deletions of several Sac family members result in lethality in animal models and mutations of the Sac3 gene have been found in human hereditary diseases. In this study, we report the crystal structure of a founding member of this family, the Sac phosphatase domain of yeast Sac1. The 2.0 Å resolution structure shows that the Sac domain comprises of two closely packed sub‐domains, a novel N‐terminal sub‐domain and the PI phosphatase catalytic sub‐domain. The structure further shows a striking conformation of the catalytic P‐loop and a large positively charged groove at the catalytic site. These findings suggest an unusual mechanism for its dephosphorylation function. Homology structural modeling of human Fig4/Sac3 allows the mapping of several disease‐related mutations and provides a framework for the understanding of the molecular mechanisms of human diseases.  相似文献   

5.
Human renal dipeptidase is a membrane-bound glycoprotein hydrolyzing dipeptides and is involved in hydrolytic metabolism of penem and carbapenem beta-lactam antibiotics. The crystal structures of the saccharide-trimmed enzyme are determined as unliganded and inhibitor-liganded forms. They are informative for designing new antibiotics that are not hydrolyzed by this enzyme. The active site in each of the (alpha/beta)(8) barrel subunits of the homodimeric molecule is composed of binuclear zinc ions bridged by the Glu125 side-chain located at the bottom of the barrel, and it faces toward the microvillar membrane of a kidney tubule. A dipeptidyl moiety of the therapeutically used cilastatin inhibitor is fully accommodated in the active-site pocket, which is small enough for precise recognition of dipeptide substrates. The barrel and active-site architectures utilizing catalytic metal ions exhibit unexpected similarities to those of the murine adenosine deaminase and the catalytic domain of the bacterial urease.  相似文献   

6.
The activity of human placental alkaline phosphatase (PLAP) is downregulated by a number of effectors such as l-phenylalanine, an uncompetitive inhibitor, 5'-AMP, an antagonist of the effects of PLAP on fibroblast proliferation and by p-nitrophenyl-phosphonate (PNPPate), a non-hydrolysable substrate analogue. For the first two, such regulation may be linked to its biological function that requires a reduced and better-regulated hydrolytic rate. To understand how such disparate ligands are able to inhibit the enzyme, we solved the structure of the complexes at 1.6A, 1.9A and 1.9A resolution, respectively. These crystal structures are the first of an alkaline phosphatase in complex with organic inhibitors. Of the three inhibitors, only l-Phe and PNPPate bind at the active site hydrophobic pocket, providing structural data on the uncompetitive inhibition process. In contrast, all three ligands interact at a remote peripheral site located 28A from the active site. In order to extend these observations to the other members of the human alkaline phosphatase family, we have modelled the structures of the other human isozymes and compared them to PLAP. This comparison highlights the crucial role played by position 429 at the active site in the modulation of the catalytic process, and suggests that the peripheral binding site may be involved in the functional specialization of the PLAP isozyme.  相似文献   

7.
The crystal structure of human purple acid phosphatase recombinantly expressed in Escherichia coli (rHPAP(Ec)) and Pichia pastoris (rHPAP(Pp)) has been determined in two different crystal forms, both at 2.2A resolution. In both cases, the enzyme crystallized in its oxidized (inactive) state, in which both Fe atoms in the dinuclear active site are Fe(III). The main difference between the two structures is the conformation of the enzyme "repression loop". Proteolytic cleavage of this loop in vivo or in vitro results in significant activation of the mammalian PAPs. In the crystals obtained from rHPAP(Ec), the carboxylate side-chain of Asp145 of this loop acts as a bidentate ligand that bridges the two metal atoms, in a manner analogous to a possible binding mode for a phosphate ester substrate in the enzyme-substrate complex. The carboxylate side-chain of Asp145 and the neighboring Phe146 side-chain thus block the active site, thereby inactivating the enzyme. In the crystal structure of rHPAP(Pp), the enzyme "repression loop" has an open conformation similar to that observed in other mammalian PAP structures. The present structures demonstrate that the repression loop exhibits significant conformational flexibility, and the observed alternate binding mode suggests a possible inhibitory role for this loop.  相似文献   

8.
    
In recent decades, many sphingolipid enzymes, sphingolipid‐metabolism regulators and sphingolipid transfer proteins have been isolated and characterized. This review will provide an overview of the intracellular localization and topology of sphingolipid enzymes in mammalian cells to highlight the locations where respective sphingolipid species are produced. Interestingly, three sphingolipids that reside or are synthesized in cytosolic leaflets of membranes (ceramide, glucosylceramide and ceramide‐1‐phosphate) all have cytosolic lipid transfer proteins (LTPs). These LTPs consist of ceramide transfer protein (CERT), four‐phosphate adaptor protein 2 (FAPP2) and ceramide‐1‐phosphate transfer protein (CPTP), respectively. These LTPs execute functions that affect both the location and metabolism of the lipids they bind. Molecular details describing the mechanisms of regulation of LTPs continue to emerge and reveal a number of critical processes, including competing phosphorylation and dephosphorylation reactions and binding interactions with regulatory proteins and lipids that influence the transport, organelle distribution and metabolism of sphingolipids.   相似文献   

9.
    
《Molecular cell》2023,83(12):2077-2090.e12
  1. Download : Download high-res image (186KB)
  2. Download : Download full-size image
  相似文献   

10.
11.
12.
    
We used noninvasive magnetic resonance imaging (MRI) and magnetic resonance spectroscopy to compare interscapular brown adipose tissue (iBAT) of wild-type (WT) and uncoupling protein 1 (UCP1)-knockout mice lacking UCP1-mediated nonshivering thermogenesis (NST). Mice were sequentially acclimated to an ambient temperature of 30°C, 18°C, and 5°C. We detected a remodeling of iBAT and a decrease in its lipid content in all mice during cold exposure. Ratios of energy-rich phosphates (ATP/ADP, phosphocreatine/ATP) in iBAT were maintained stable during noradrenergic stimulation of thermogenesis in cold- and warm-adapted mice and no difference between the genotypes was observed. As free fatty acids (FFAs) serve as fuel for thermogenesis and activate UCP1 for uncoupling of oxidative phosphorylation, brown adipose tissue is considered to be a main acceptor and consumer of FFAs. We measured a major loss of FFAs from iBAT during noradrenergic stimulation of thermogenesis. This mobilization of FFAs was observed in iBAT of WT mice as well as in mice lacking UCP1. The high turnover and the release of FFAs from iBAT suggests an enhancement of lipid metabolism, which in itself contributes to the sympathetically activated NST and which is independent from uncoupled respiration mediated by UCP1. Our study demonstrates that MRI, besides its potential for visualizing and quantification of fat tissue, is a valuable tool for monitoring functional in vivo processes like lipid and phosphate metabolism during NST.  相似文献   

13.
    
Phospholipids serve as central structural components in cellular membranes and as potent mediators in numerous signaling pathways. There are six main classes of naturally occurring phospholipids distinguished by their distinct polar head groups that contain many unique molecular species with distinct fatty acid composition. Phospholipid molecular species are often expressed as isobaric species that are denoted by the phospholipid class and the total number of carbon atoms and double bonds contained in the esterified fatty acyl groups (e.g., phosphatidylcholine 34:2). Techniques to separate these molecules exist, and each has positive and negative attributes. Hydrophilic interaction liquid chromatography uses polar bonded silica to separate lipids by polar head group but not by specific molecular species. Reversed phase (RP) chromatography can separate by fatty acyl chain composition but not by polar head group. Herein we describe a new strategy called differential ion mobility spectrometry (DMS), which separates phospholipid classes by their polar head group. Combining DMS with current LC methods enhances phospholipid separation by increasing resolution, specificity, and signal-to-noise ratio. Additional application of specialized information-dependent acquisition methodologies along with RP chromatography allows full isobaric resolution, identification, and compositional characterization of specific phospholipids at the molecular level.  相似文献   

14.
    
Recent studies have identified an ABCA1-dependent, phosphatidylcholine-rich microdomain, called the “high-capacity binding site” (HCBS), that binds apoA-I and plays a pivotal role in apoA-I lipidation. Here, using sucrose gradient fractionation, we obtained evidence that both ABCA1 and [125I]apoA-I associated with the HCBS were found localized to nonraft microdomains. Interestingly, phosphatidylcholine (PtdCho) was selectively removed from nonraft domains by apoA-I, whereas sphingomyelin and cholesterol were desorbed from both detergent-resistant membranes and nonraft domains. The modulatory role of cholesterol on apoA-I binding to ABCA1/HCBS was also examined. Loading cells with cholesterol resulted in a drastic reduction in apoA-I binding. Conversely, depletion of membrane cholesterol by methyl-β-cyclodextrin treatment resulted in a significant increase in apoA-I binding. Finally, we obtained evidence that apoA-I interaction with ABCA1 promoted the activation and gene expression of key enzymes in the PtdCho biosynthesis pathway. Taken together, these results provide strong evidence that the partitioning of ABCA1/HCBS to nonraft domains plays a pivotal role in the selective desorption of PtdCho molecules by apoA-I, allowing an optimal environment for cholesterol release and regeneration of the PtdCho-containing HCBS. This process may have important implications in preventing and treating atherosclerotic cardiovascular disease.  相似文献   

15.
    
Liu  Bin  Gao  Ting-Ting  Fu  Xiao-Yu  Xu  Zhen-Hao  Ren  Hao  Zhao  Ping  Qi  Zhong-Tian  Qin  Zhao-Ling 《中国病毒学》2021,36(3):412-423
  相似文献   

16.
体内肉碱来源及其对脂类代谢的影响   总被引:7,自引:0,他引:7  
肉碱是体内一种有多种生理功能的氨基酸类物质,其在脂类代谢过程中有重要的调节作用,近年来在甘油三脂血症、肾透析患者的脂代谢障碍的辅助治疗中取得了较好疗效。本文就肉碱的来源和对脂类代谢的影响进行了讨论。  相似文献   

17.
18.
Mitochondria play an important role in modulating intracellular levels of calcium, and therefore compromised mitochondrial function often leads to disruptions in calcium homeostasis. In this study, the effects of two uncouplers of oxidative phosphorylation, carbonyl cyanide-3-chlorophenylhydrazone (CCCP) and p-trifluoromethoxyphenylhydrazone (FCCP), on calcium-mediated modifications of the microtubule-associated protein, tau, in rat brain slices were examined. Incubation of slices with CCCP or FCCP resulted in an increase in electrophoretic mobility of several of the tau isoforms, with no apparent loss of intact tau or the appearance of degradation products. These data indicated that disrupting mitochondrial function by dissipating the transmembrane potential resulted in the dephosphorylation of tau. This finding was confirmed by using a front phosphorylation assay to demonstrate a CCCP-induced decrease in the phosphorylation state of tau. The dephosphorylation of tau induced by the proton-ionophores appeared to be calcium-dependent since the effect was blocked by EGTA. In addition, the CCCP-induced dephosphorylation of tau was blocked by cyclosporin A, a selective inhibitor of the calcium-dependent phosphatase, calcineurin. These data strongly indicate that tau is a substrate for calcineurin in vivo. Finally, the levels of ATP were depleted to a similar extent in brain slices incubated in the presence of CCCP or CCCP and EGTA. These results demonstrated depletion of ATP alone was not sufficient to stimulate the dephosphorylation of tau in this experimental paradigm.  相似文献   

19.
The role of acid phosphatases in plant phosphorus metabolism   总被引:18,自引:0,他引:18  
Hydrolysis of phosphate esters is a critical process in the energy metabolism and metabolic regulation of plant cells. This review summarizes the characteristics and putative roles of plant acid phosphatase (APase). Although immunologically closely related, plant APases display remarkable heterogeneity with regards to their kinetic and molecular properties, and subcellular location. The secreted APases of roots and cell cultures are relatively non-specific enzymes that appear to be important in the hydrolysis and mobilization of Pi from extracellular phosphomonoesters for plant nutrition. Intracellular APases are undoubtedly involved in the routine utilization of Pi reserves or other Pi-containing compounds. A special class of intracellular APase exists that demonstrate a clear-cut (but generally nonabsolute) substrate selectivity. These APases are hypothesized to have distinct metabolic functions and include: phytase, phosphoglycolate phosphatase, 3-phosphoglycerate phosphatase, phosphoenolpyruvate phosphatase, and phosphotyrosyl-protein phosphatase. APase expression is regulated by a variety of developmental and environmental factors. Pi starvation induces de novo synthesis of extra- and intracellular APases in cell cultures as well as in whole plants. Recommendations are made to achieve uniformity in the analyses of the different APase isoforms normally encountered within and between different plant tissues.  相似文献   

20.
    
The metallo-beta-lactamases require zinc or cadmium for hydrolyzing beta-lactam antibiotics and are inhibited by mercurial compounds. To data, there are no clinically useful inhibitors of this class of enzymes. The crystal structure of the Zn(2+)-bound enzyme from Bacteroides fragilis contains a binuclear zinc center in the active site. A hydroxide, coordinated to both zinc atoms, is proposed as the moiety that mounts the nucleophilic attack on the carbonyl carbon atom of the beta-lactam ring. To study the metal coordination further, the crystal structures of a Cd(2+)-bound enzyme and of an Hg(2+)-soaked zinc-containing enzyme have been determined at 2.1 A and 2.7 A, respectively. Given the diffraction resolution, the Cd(2+)-bound enzyme exhibits the same active-site architecture as that of the Zn(2+)-bound enzyme, consistent with the fact that both forms are enzymatically active. The 10-fold reduction in activity of the Cd(2+)-bound molecule compared with the Zn(2+)-bound enzyme is attributed to fine differences in the charge distribution due to the difference in the ionic radii of the two metals. In contrast, in the Hg(2+)-bound structure, one of the zinc ions, Zn2, was ejected, and the other zinc ion, Zn1, remained in the same site as in the 2-Zn(2+)-bound structure. Instead of the ejected zinc, a mercury ion binds between Cys 104 and Cys 181, 4.8 A away from Zn1 and 3.9 A away from the site where Zn2 is located in the 2-Zn(2+)-bound molecule. The perturbed binuclear metal cluster explains the inactivation of the enzyme by mercury compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号