首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized a Kazal family serine protease inhibitor, Toxoplasma gondii protease inhibitor 1 (TgPI-1), in the obligate intracellular parasite Toxoplasma gondii. TgPI-1 contains four inhibitor domains predicted to inhibit trypsin, chymotrypsin, and elastase. Antibodies against recombinant TgPI-1 detect two polypeptides, of 43 and 41 kDa, designated TgPI-1(43) and TgPI-1(41), in tachyzoites, bradyzoites, and sporozoites. TgPI-1(43) and TgPI-1(41) are secreted constitutively from dense granules into the excreted/secreted antigen fraction as well as the parasitophorous vacuole that T. gondii occupies during intracellular replication. Recombinant TgPI-1 inhibits trypsin, chymotrypsin, pancreatic elastase, and neutrophil elastase. Immunoprecipitation studies with anti-rTgPI-1 antibodies reveal that recombinant TgPI-1 forms a complex with trypsin that is dependent on interactions with the active site of the protease. TgPI-1 is the first anti-trypsin/chymotrypsin inhibitor to be identified in bradyzoites and sporozoites, stages of the parasite that would be exposed to proteolytic enzymes in the digestive tract of the host.  相似文献   

2.
The complete amino acid sequence obtained by electrospray ionization tandem mass spectrometry of the proteinase inhibitor CmPI-II isolated from Cenchritis muricatus is described. CmPI-II is a 5480-Da protein with three disulfide bridges that inhibits human neutrophil elastase (HNE) (K(i) 2.6+/-0.2 nM), trypsin (K(i) 1.1+/-0.9 nM), and other serine proteinases such as subtilisin A (K(i) 30.8+/-1.2 nM) and pancreatic elastase (K(i) 145.0+/-4.4 nM); chymotrypsin, pancreatic and plasma kallikreins, thrombin and papain are not inhibited. CmPI-II shares homology with the Kazal-type domain and may define a new group of 'non-classical' Kazal inhibitors according to its Cys(I)-Cys(V) disulfide bridge position. The 3D model of CmPI-II exhibits similar secondary structure characteristics to Kazal-type inhibitors and concurs with circular dichroism experiments. A 3D model of the CmPI-II/HNE complex provides a structural framework for the interpretation of its experimentally determined K(i) value. The model shows both similar and different contacts at the primary binding sites in comparison with the structure of turkey ovomucoid third domain (OMTKY3)/HNE used as template. Additional contacts calculated at the protease-inhibitor interface could also contribute to the association energy of the complex. This inhibitor represents an exception in terms of specificity owing to its ability to strongly inhibit elastases and trypsin.  相似文献   

3.
A serine protease inhibitor, termed TsCEI, was purified from adult-stage Trichuris suis by acid precipitation, affinity chromatography (elastase-agarose), and reverse-phase HPLC. The molecular weight of TsCEI was estimated at 6.437 kDa by laser desorption mass spectrometry. TsCEI potently inhibited both chymotrypsin (K(i) = 33.4 pM) and pancreatic elastase (K(i) = 8.32 nM). Neutrophil elastase, chymase (mouse mast cell protease-1, mMCP-1), and cathepsin G were also inhibited by TsCEI, whereas trypsin, thrombin, and factor Xa were not. The cDNA-derived amino acid sequence of the mature TsCEI consisted of 58 residues including 9 cysteine residues with a molecular mass of 6.196 kDa. TsCEI displayed 48% sequence identity to a previously characterized trypsin/chymotrypsin inhibitor of T. suis, TsTCI. TsCEI showed 36% sequence identity to a protease inhibitor from the hemolymph of the honeybee Apis mellifera. Sequence similarity was also detected with the trypsin/thrombin inhibitor of the European frog Bombina bombina, the elastase isoinhibitors of the nematode Anisakis simplex, and the chymotrypsin/elastase and trypsin inhibitors of the nematode Ascaris suum. The inhibitors of T. suis, an intestinal parasite of swine, may function as components of a parasite defense mechanism by modulating intestinal mucosal mast cell-associated, protease-mediated, host immune responses.  相似文献   

4.
The major inhibitor of trypsin in seeds of Prosopsis juliflora was purified by precipitation with ammonium sulphate, ion-exchange column chromatography on DEAE- and CM-Sepharose and preparative reverse phase HPLC on a Vydac C-18 column. The protein inhibited trypsin in the stoichiometric ratio of 1:1, but had only weak activity against chymotrypsin and did not inhibit human salivary or porcine pancreatic alpha-amylases. SDS-PAGE indicated that the inhibitor has a Mr of ca 20,000, and IEF-PAGE showed that the pI is 8.8. The complete amino acid sequence was determined by automatic degradation, and by DABITC/PITC microsequence analysis of peptides obtained from enzyme digestions of the reduced and S-carboxymethylated protein with trypsin, chymotrypsin, elastase, the Glu-specific protease from S. aureus and the Lys-specific protease from Lysobacter enzymogenes. The inhibitor consisted of two polypeptide chains, of 137 residues (alpha chain) and 38 residues (beta chain) linked together by a single disulphide bond. The amino acid sequence of the protein exhibited homology with a number of Kunitz proteinase inhibitors from other legume seeds, the bifunctional subtilisin/alpha-amylase inhibitors from cereals and the taste-modifying protein miraculin.  相似文献   

5.
An inhibitor (BGIA) against an acidic amino acid-specific endopeptidase of Streptomyces griseus (Glu S. griseus protease) was isolated from seeds of the bitter gourd Momordica charantia L., and its amino acid sequence was determined. The molecular weight of BGIA based on the amino acid sequence was calculated to be 7419. BGIA competitively inhibited Glu S. griseus protease with an inhibition constant (Ki) of 70 nM, and gel filtration analyses suggested that BGIA forms a 1:1 complex with this protease. However, two other acidic amino acid-specific endopeptidases, protease V8 from Staphylococcus aureus and Bacillus subtilis proteinase (Glu B. subtilis protease), were not inhibited by BGIA. BGIA had no inhibitory activity against chymotrypsin, trypsin, porcine pancreatic elastase, and papain, although subtilisin Carlsberg was strongly inhibited. The amino acid sequence of BGIA shows similarity to potato chymotrypsin inhibitor, barley subtilisin-chymotrypsin inhibitor CI-1 and CI-2, and leech eglin C, especially around the reactive site. Although the residue at the putative reactive site of these inhibitors is leucine or methionine, the corresponding amino acid in BGIA is alanine.  相似文献   

6.
The primary structure of the broad specificity proteinase inhibitor from dog submandibular glands was elucidated. The inhibitor consists of a single polypeptide chain of 117 amino acids which is folded into two domains (heads) connected by a peptide of three amino acid residues. Both domains I and II show a clear structural homology to each other as well as to the single-headed pancreatic secretory trypsin inhibitors (Kazal type). The trypsin reactive site (-Cys-Pro-Arg-Leu-His-Glx-Pro-Ile-Cys-) is located in domain I and the chymotrypsin reactive center (-Cys-Thr-Met-Asp-Tyr-Asx-Arg-Pro-Leu-Tyr-Cys-) in domain II, cf. the Figure. The inhibitor is thus double-headed with two independent reactive sites. Whereas head I is responsible for the inhibition of trypsin and plasmin, head II is responsible for the inhibition of chymotrypsin, subtilisin, elastase and probably also Aspergillus oryzae protease and pronase. Remarkably, the structural homology exists also to the single-headed acrosin-trypsin inhibitors from seminal plasma[12] and the Japanese quail inhibitor composed of three domains[13].  相似文献   

7.
The honeybee is an important insect species in global ecology, agriculture, and alternative medicine. While chymotrypsin and trypsin inhibitors from bees show activity against cathepsin G and plasmin, respectively, no anti-elastolytic role for these inhibitors has been elucidated. In this study, we identified an Asiatic honeybee (Apis cerana) chymotrypsin inhibitor (AcCI), which was shown to also act as an elastase inhibitor. AcCI was found to consist of a 65-amino acid mature peptide that displays ten cysteine residues. When expressed in baculovirus-infected insect cells, recombinant AcCI demonstrated inhibitory activity against chymotrypsin (Ki 11.27 nM), but not trypsin, defining a role for AcCI as a honeybee-derived chymotrypsin inhibitor. Additionally, AcCI showed no detectable inhibitory effects on factor Xa, thrombin, plasmin, or tissue plasminogen activator; however, AcCI inhibited human neutrophil elastase (Ki 61.05 nM), indicating that it acts as an anti-elastolytic factor. These findings constitute molecular evidence that AcCI acts as a chymotrypsin/elastase inhibitor.  相似文献   

8.
9.
Contrapsin and alpha-1-antitrypsin have been recently characterized as major protease inhibitors in mouse plasma (Takahara, H. & Sinohara, H. (1982) J. Biol. Chem. 257, 2438-2446). We have studied the effects of the two inhibitors upon various serine proteases prepared from mouse tissues. Trypsin, plasmin and trypsin-like proteases of the submaxillary gland were inhibited by contrapsin but not by alpha-1-antitrypsin. On the other hand, chymotrypsin, elastase, and thrombin were inactivated by alpha-1-antitrypsin but not by contrapsin. Thus, their inhibitory spectra did not overlap each other in spite of their broad specificities. The inhibition of trypsin, chymotrypsin, and elastase was rapid and stoichiometric, whereas the inhibition of the other proteases was relatively slow. Contrapsin accounted for almost the total capacities of mouse plasma to inhibit both trypsin and submaxillary gland trypsin-like proteases, whereas alpha-1-antitrypsin was responsible for nearly all the capacities of plasma to inhibit both chymotrypsin and elastase.  相似文献   

10.
Site-specific mutagenesis techniques have been used to construct active site variants of the Kunitz-type protease inhibitor domain present in the Alzheimer's beta-amyloid precursor protein (APP-KD). Striking alteration of its protease inhibitory properties were obtained when the putative P1 residue, arginine, was replaced with the small hydrophobic residue valine. The altered protein was no longer inhibitory toward bovine pancreatic trypsin, human Factor XIa, mouse epidermal growth factor-binding protein, or bovine chymotrypsin, all of which are strongly inhibited by the unaltered APP-KD (Sinha, S., Dovey, H. F., Seubert, P., Ward, P. J., Blacher, R. W., Blaber, M., Bradshaw, R. A., Arici, M., Mobley, W. C., and Lieberburg, I. (1990) J. Biol. Chem. 265, 8983-8985). Instead, the P1-Val-APP-KD was a potent inhibitor of human neutrophil elastase, with a Ki = 0.8 nM, as estimated by the inhibition of the activity of human neutrophil elastase measured using a chromogenic substrate. It also inhibited the degradation of insoluble elastin by the enzyme virtually stoichiometrically. Replacement of the P1' (Ala) and P2' (Met) residues of P1-Val-MKD with the corresponding residues (Ser, Ile) from alpha 1-proteinase inhibitor resulted in an inactive protein, underscoring the mechanistic differences between the serpins from the Kunitz-type protease inhibitor family. These results confirm the importance of the P1 arginine residue of APP-KD in determining inhibitory specificity, and are also the first time that a single amino acid replacement has been shown to generate a specific potent human neutrophil elastase inhibitor from a human KD sequence.  相似文献   

11.
The partition of 125I-labelled pancreatic trypsin, chymotrypsin and elastase between the inhibitors, alpha 2-macroglobulin f and s, alpha 1-protease inhibitor, alpha 2-antitrypsin, inter-alpha-trypsin inhibitor and the specific sow colostrum protease inhibitor, was studied in vitro by gradually increasing the concentration of these proteases in blood serum from adult and newborn pigs. As revealed by immunoelectrophoresis in combination with autoradiography, differences were noted in the abilities of the various protease inhibitors to interact with and to form complexes with the three proteases, resulting in changes in location, height and numbers of precipitates. Among the serum inhibitors, alpha 2-macroglobulins showed the highest relative affinity to all three proteases, while alpha 1-protease inhibitor showed a high relative affinity only for chymotrypsin. Serum alpha 2-antitrypsin complexed only with trypsin, with a low relative affinity. alpha 2-Antitrypsin also interacted with chymotrypsin and elastase, but without forming complexes. When complexes of sow colostrum protease inhibitor and trypsin were added to the serum from neonatal pigs, these complexes remained stable. The results obtained from these in vitro studies, indicating differences in the relative affinities of the inhibitors to the various proteases, give some information about the role of the inhibitors in vivo, both in adult and in neonatal pigs.  相似文献   

12.
Human neutrophil elastase inhibition was detected in a crude extract of the marine snail Cenchritis muricatus (Gastropoda, Mollusca). This inhibitory activity remained after heating this extract at 60 degrees C for 30 min. From this extract, three human neutrophil elastase inhibitors (designated CmPI-I, CmPI-II and CmPI-III) were purified by affinity and reversed-phase chromatographies. Homogeneity of CmPI-I and CmPI-II was confirmed, while CmPI-III showed a single peak in reversed-phase chromatography, but heterogeneity in SDS-PAGE with preliminary molecular masses in the range of 18.4 to 22.0 kDa. In contrast, MALDI-TOF mass spectrometry of CmPI-I and CmPI-II showed that these inhibitors are molecules of low molecular mass, 5576 and 5469 Da, respectively. N-terminal amino acid sequences of CmPI-I (6 amino acids) and CmPI-II (20 amino acids) were determined. Homology to Kazal-type protease inhibitors was preliminarily detected for CmPI-II. Both inhibitors, CmPI-I and CmPI-II are able to inhibit human neutrophil elastase strongly, with equilibrium dissociation constant (Ki) values of 54.2 and 1.6 nM, respectively. In addition, trypsin and pancreatic elastase were also inhibited, but not plasma kallikrein or thrombin. CmPI-I and CmPI-II are the first human neutrophil elastase inhibitors described in a mollusk.  相似文献   

13.
目的:原核表达并制备重组蜱kunitz型丝氨酸蛋白酶抑制剂IsKuI-1,检测其抗凝血及抑制蛋白酶活性。方法:构建pET32a-sumo/IsKuI-1原核表达质粒,并转入到E. coli BL21(DE3)中,用IPTG诱导表达。表达产物经Ni-NTA亲和层析,在层析柱上用SUMO蛋白酶切割融合伴侣,纯化后得到重组目的多肽rIsKuI-1。用PT及aPTT法检测重组目的多肽的抗凝活性,发色底物法检测rIsKuI-1对丝氨酸蛋白酶的抑制活性。结果:用原核表达系统获得了rIsKuI-1,其无延长PT及aPTT活性,对人中性粒细胞弹性蛋白酶具有较好的抑制活性(IC50=1.83μM),且特异性强。结论:IsKuI-1是一种活性较好的人NE抑制剂。因此为进一步探讨rIsKuI-1的生物学功能及其作为新药开发应用奠定了基础。  相似文献   

14.
Specific monoclonal antibodies against the active sites of two genetically engineered pancreatic secretory trypsin inhibitor (PSTI) variants (PSTI 0 and PSTI 4) were produced. The protease inhibitors PSTI 0 and PSTI 4 differ only by three amino acid substitution at their active sites. PSTI 0 inhibits trypsin, whereas PSTI 4 inhibits human granulocyte elastase and chymotrypsin. Immunization was performed in vitro with a synthetic heptapeptide that covers the mutated region of the protein. For this purpose in vitro culture conditions for the production of specific monoclonal antibodies against synthetic peptides were improved. The monoclonal antibodies obtained react specifically with the corresponding protease inhibitor variant. Competition experiments with trypsin and human elastase demonstrate that the protease displace the monoclonal antibody from the active site of PSTI 0 and PSTI 4 respectively.  相似文献   

15.
A doubleheaded protease inhibitor showing inhibition of bovine pancreatic trypsin and α-chymotrypsin was isolated and purified from the seeds of Phaseolus mungo. The molecular weight of the protease inhibitor was found to be 14.2 kD by SDS-PAGE analysis and gel filtration. The native inhibitor inhibited trypsin and α-chymotrypsin stoichiometrically at the molar ratio 1:1 and 2:1 respectively. The Ki app for trypsin was found to be 0.35 nM and for α-chymotrypsin to be 2.4 nM. Bovine pepsin was not inhibited by the inhibitor. However, the pepsin treated inhibitor was still able to inhibit trypsin and α-chymotrypsin. The inhibitor was stable in 8M urea. Addition of 0.2 M mercaptoethanol resulted in significant loss of inhibitory activity. The inhibitor was extremely heat stable with only 50% loss of inhibitory activity after heating for 100°C for 20 min. Thus, the Phaseolus mungo trypsin/chymotrypsin inhibitor resembles other Bowman-Birk protease inhibitors.  相似文献   

16.
A low molecular weight serine protease inhibitor, named trypstatin, was purified from rat peritoneal mast cells. It is a single polypeptide with 61 amino acid residues and an Mr of 6610. Trypstatin markedly inhibits blood coagulation factor Xa (Ki = 1.2 x 10(-10) M) and tryptase (Ki = 3.6 x 10(-10) M) from rat mast cells, which have activities that convert prothrombin to thrombin. It also inhibits porcine pancreatic trypsin (Ki = 1.4 x 10(-8) M) and chymase (Ki = 2.4 x 10(-8) M) from rat mast cells, but not papain, alpha-thrombin, or porcine pancreatic elastase. Trypstatin forms a complex in a molar ratio of 1:1 with trypsin and one subunit of tryptase. The complete amino acid sequence of this inhibitor was determined and compared with those of Kunitz-type inhibitors. Trypstatin has a high degree of sequence homology with human and bovine inter-alpha-trypsin inhibitors, A4(751) Alzheimer's disease amyloid protein precursor, and basic pancreatic trypsin inhibitor. However, unlike other known Kunitz-type protease inhibitors, it inhibits factor Xa most strongly.  相似文献   

17.
Serine protease inhibitors in extracts from three North American leeches, Nephelopsis obscura, Erpobdella punctata and Hemopis marmorata have been separated by anion exchange chromatography and the activity pattern against human granulocyte elastase and porcine chymotrypsin and trypsin determined. All three leech species contained a major peak with anti-trypsin activity, but Hemopis was unique in that the trypsin inhibitor was equally active against chymotrypsin. Nephelopsis was rich in anti-elastase activity of two types, one which was also active against chymotrypsin, and one which was a specific elastase inhibitor. Erpobdella contained inhibitors against elastase and chymotrypsin but with major activity against the latter.  相似文献   

18.
The acid-labile inter-alpha-trypsin inhibitor is cleaved enzymatically in vivo, liberating a smaller acid-stable inhibitor. The molar ratio of native inhibitor to this smaller inhibitor in plasma is significantly changed in some severe cases of inflammation and kidney injury. To clarify this observation on a molecular basis, the action of four different types of proteinases (trypsin, plasmin, kallikrein and granulocyte elastase) on the inter-alpha-trypsin inhibitor was studied. The initial rate of cleavage of the inter-alpha-trypsin inhibitor by a 1.3-fold molar excess of proteinase over inhibitor was found to be 4375 nM x min-1 with granulocyte elastase, 860 nM x min-1 with trypsin, 67 nM x min-1 with plasmin, and 0.3 nM X min-1 with kallikrein. Obviously, of the enzymes studied so far, the granulocyte elastase known to be released during severe inflammatory processes is by far the most potent proteinase in the transformation of the inter-alpha-trypsin inhibitor. The inter-alpha-trypsin inhibitor and its cleavage products inhibit bovine trypsin very strongly (Ki = 10(-9)--10(-11) M), porcine plasmin much less strongly, human plasmin very weakly and pancreatic kallikrein practically not at all.  相似文献   

19.
A low molecular weight protease inhibitor peptide found in ovaries of the desert locust Schistocerca gregaria (SGPI-2), was purified from plasma of the same locust and sequenced. It was named SGCI. It was found active towards chymotrypsin and human leukocyte elastase. SGCI was synthesized using a solid-phase procedure and the sequence of its reactive site for chymotrypsin was determined. Compared with an inhibitor purified earlier from another locust species, the total sequence of SGCI showed 88% identity. In particular, the sequence of the reactive site of these inhibitors was identical. Our search for a closely related peptide in an insect species far removed from locusts, the lepidopteran Spodoptera littoralis, was unfruitful but a different chymotrypsin inhibitor, belonging to the Kazal family, was found whose mass is greater than that of SGCI (20 vs 3.6 kDa). Its N-terminal sequence shares 80% identity with that of a chymotrypsin inhibitor purified earlier from the haemolymph of another lepidopteran. Conservation of the amino acid sequence in the reactive site seems to be an exception among protease inhibitors.  相似文献   

20.
Giant taro (Alocasiamacrorrhiza) contains a protein which inhibits both trypsin and chymotrypsin. This trypsin/chymotrypsin inhibitor exists as a dimer of two identical monomers each with slight polymorphism and is an attractive candidate for conferring insect resistance in transgenic plants. The 184 amino-acid sequence (molecular mass of 19774 Da for the Met-24, Glu-50 form) has been determined and is compared with those of other Kunitz-type trypsin, chymotrypsin and subtilisin inhibitors. There appears to be greater ‘homology’ between the giant taro inhibitor and those inhibitors from other monocotyledons than inhibitors from dicotyledons. The P1 loop region is different from that of other Kunitz-type inhibitors and contains a sequence Leu-Ala-Phe-Phe-Pro at residues 56–60. This section of sequence differs only by a Leu/Ile replacement to a tight binding inhibitor of neutrophil elastase, Recently produced by genetic engineering. The most likely candidate for the P1 residue in the giant taro trypsin/chymotrypsin inhibitor is Leu-56.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号