首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Catalytic activity of four structural variants of the antigenomic delta ribozyme, two cis- and two trans-acting, has been compared in the presence of selected divalent metal ions that effectively support catalysis. The ribozymes differ in regions that are not directly involved in formation of the ribozyme active site: the region immediately preceding the catalytic cleavage site, the P4 stem and a stretch of the viral RNA sequence extending the minimal ribozyme sequence at its 3′-terminus. The variants show high cleavage activity in the presence of Mg2+, Ca2+ and Mn2+, lower with Co2+ and Sr2+ and some variants are also active with Cd2+ and Zn2+ ions. In the presence of a particular metal ion the ribozymes cleave, however with different initial rates, according to pseudo-first or higher order kinetics and to different final cleavage extents. On the other hand, relatively small differences are observed in the reactions induced by various metal ions. The cleavage of trans-acting ribozymes induced by Mg2+ is partially inhibited in the presence of Na+, spermidine and some other divalent metal ions. The inert Co(NH3)63+ complex is unable to support catalysis, as reported earlier for the genomic ribozyme. The results are discussed in terms of the influence of structural elements peripheral to the ribozyme active site on its cleavage rate and efficiency as well as the role of metal ions in the cleavage mechanism. Some implications concerning further studies and possible applications of delta ribozymes are also considered.  相似文献   

2.
小型核酶的结构和催化机理   总被引:5,自引:1,他引:4  
自然界存在的小型核酶主要有锤头型核酶、发夹型核酶、肝炎δ病毒(HDV)核酶和VS核酶.锤头型核酶由3个短螺旋和1个广义保守的连接序列组成;发夹型核酶的催化中心由两个肩并肩挨着的区域构成;HDV核酶折叠成包含五个螺旋臂(P1~P4)的双结结构;VS核酶由五个螺旋结构组成,这些螺旋结构通过两个连接域连接起来.小型核酶的催化机理与其分子结构密切相关.金属离子或特定碱基都可作为催化反应的关键成分.锤头型核酶的催化必须有金属离子(尤其是二价金属离子)参与,而发夹型核酶则完全不需要金属离子.基因组HDV核酶进行催化时要有金属离子和特定碱基互相配合.  相似文献   

3.
The recombination-activating protein, RAG1, a key component of the V(D)J recombinase, binds multiple Zn2+ ions in its catalytically required core region. However, the role of zinc in the DNA cleavage activity of RAG1 is not well resolved. To address this issue, we determined the stoichiometry of Zn2+ ions bound to the catalytically active core region of RAG1 under various conditions. Using metal quantitation methods, we determined that core RAG1 can bind up to four Zn2+ ions. Stripping the full complement of bound Zn2+ ions to produce apoprotein abrogated DNA cleavage activity. Moreover, even partial removal of zinc-binding equivalents resulted in a significant diminishment of DNA cleavage activity, as compared to holo-Zn2+ core RAG1. Mutants of the intact core RAG1 and the isolated core RAG1 domains were studied to identify the location of zinc-binding sites. Significantly, the C-terminal domain in core RAG1 binds at least two Zn2+ ions, with one zinc-binding site containing C902 and C907 as ligands (termed the CC zinc site) and H937 and H942 coordinating a Zn2+ ion in a separate site (HH zinc site). The latter zinc-binding site is essential for DNA cleavage activity, given that the H937A and H942A mutants were defective in both in vitro DNA cleavage assays and cellular recombination assays. Furthermore, as mutation of the active-site residue E962 reduces Zn2+ coordination, we propose that the HH zinc site is located in close proximity to the DDE active site. Overall, these results demonstrate that Zn2+ serves an important auxiliary role for RAG1 DNA cleavage activity. Furthermore, we propose that one of the zinc-binding sites is linked to the active site of core RAG1 directly or indirectly by E962.  相似文献   

4.
Folding of the major population of Tetrahymena intron RNA into the catalytically active structure is trapped in a slow pathway. In this report, folding of Candida albicans intron was investigated using the trans-acting Ca.L-11 ribozyme as a model. We demonstrated that both the catalytic activity (kobs) and compact folding equilibrium of Ca.L-11 are strongly dependent on Mg2+ at physiological concentrations, with both showing an Mg2+ Hill coefficient of 3. Formation of the compact structure of Ca.L-11 is shown to occur very rapidly, on a subsecond time scale similar to that of RNase T1 cleavage. Most of the ribozyme RNA population folds into the catalytically active structure with a rate constant of 2 min–1 at 10 mM Mg2+; neither slower kinetics nor obvious Mg2+ inhibition is observed. These results suggest that folding of the Ca.L-11 ribozyme is initiated by a rapid magnesium-dependent RNA compaction, which is followed by a slower searching for the native contacts to form the catalytically active structure without interference from the long-lived trapped states. This model thus provides an ideal system to address a range of interesting aspects of RNA folding, such as conformational searching, ion binding and the role of productive intermediates.  相似文献   

5.
Abstract

A three-dimensional model of the Tetrahymena thermophila group I intron is used to further explore the catalytic mechanism of the transphosphorylation reaction of the cleavage step. Based on the coordinates of the catalytic core model proposed by Michel and Westhof (Michel, F., Westhof, E.J. Mol. Biol. 216, 585–610 (1990)), we first converted their ligation step model into a model of the cleavage step by the substitution of several bases and the removal of helix P9. Next an attempt to place a trigonal bipyramidal transition state model in the active site revealed that this modified model for the cleavage step could not accommodate the transition state due to insufficient space. A lowering of PI helix relative to surrounding helices provided the additional space required. Simultaneously, it provided a better starting geometry to model the molecular contacts proposed by Pyle et al. (Pyle, A M., Murphy, F. L., Cech, T. R. Nature 358, 123–128. (1992)), based on mutational studies involving the J8/7 segment Two hydrated Mg2+ complexes were placed in the active site of the ribozyme model, using the crystal structure of the functionally similar Klenow fragment (Beese, L.S., Steitz, T.A. EMBO J. 10, 25–33 (1991)) as a guide. Thepresence of two metal ions in the active site of the intron differs from previous models, which incorporate one metal ion in the catalytic site to fulfill the postulated roles of Mg2+ in catalysis. The reaction profile is simulated based on a trigonal bipyramidal transition state, and the role of the hydrated Mg2+ complexes in catalysis is further explored using molecular orbital calculations.  相似文献   

6.
The effects of various metal ions on cleavage activity and global folding have been studied in the extended Schistosoma hammerhead ribozyme. Fluorescence resonance energy transfer was used to probe global folding as a function of various monovalent and divalent metal ions in this ribozyme. The divalent metals ions Ca2+, Mg2+, Mn2+, and Sr2+ have a relatively small variation (less than sixfold) in their ability to globally fold the hammerhead ribozyme, which contrasts with the very large difference (>10,000-fold) in apparent rate constants for cleavage for these divalent metal ions in single-turnover kinetic experiments. There is still a very large range (>4600-fold) in the apparent rate constants for cleavage for these divalent metal ions measured in high salt (2 M NaCl) conditions where the ribozyme is globally folded. These results demonstrate that the identity of the divalent metal ion has little effect on global folding of the Schistosoma hammerhead ribozyme, whereas it has a very large effect on the cleavage kinetics. Mechanisms by which the identity of the divalent metal ion can have such a large effect on cleavage activity in the Schistosoma hammerhead ribozyme are discussed.  相似文献   

7.
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of approximately 200 ns of explicit-solvent molecular dynamics simulations to provide a complementary atomistic view of the binding of monovalent and divalent cations as well as water molecules to reaction precursor and product forms of the HDV ribozyme. Our simulations find that an Mg2+ cation binds stably, by both inner- and outer-sphere contacts, to the electronegative catalytic pocket of the reaction precursor, in a position to potentially support chemistry. In contrast, protonation of the catalytically involved C75 in the precursor or artificial placement of this Mg2+ into the product structure result in its swift expulsion from the active site. These findings are consistent with a concerted reaction mechanism in which C75 and hydrated Mg2+ act as general base and acid, respectively. Monovalent cations bind to the active site and elsewhere assisted by structurally bridging long-residency water molecules, but are generally delocalized.  相似文献   

8.
Hatchet RNAs are members of a novel self-cleaving ribozyme class that was recently discovered by using a bioinformatics search strategy. The consensus sequence and secondary structure of this class includes 13 highly conserved and numerous other modestly conserved nucleotides interspersed among bulges linking four base-paired substructures. A representative hatchet ribozyme from a metagenomic source requires divalent ions such as Mg2+ to promote RNA strand scission with a maximum rate constant of ∼4 min−1. As with all other small self-cleaving ribozymes discovered to date, hatchet ribozymes employ a general mechanism for catalysis involving the nucleophilic attack of a ribose 2′-oxygen atom on an adjacent phosphorus center. Kinetic characteristics of the reaction demonstrate that members of this ribozyme class have an essential requirement for divalent metal ions and that they might have a complex active site that employs multiple catalytic strategies to accelerate RNA cleavage by internal phosphoester transfer.  相似文献   

9.
Colicin-like bacteriocins show potential as next generation antibiotics with clinical and agricultural applications. Key to these potential applications is their high potency and species specificity that enables a single pathogenic species to be targeted with minimal disturbance of the wider microbial community. Here we present the structure and function of the colicin M-like bacteriocin, syringacin M from Pseudomonas syringae pv. tomato DC3000. Syringacin M kills susceptible cells through a highly specific phosphatase activity that targets lipid II, ultimately inhibiting peptidoglycan synthesis. Comparison of the structures of syringacin M and colicin M reveals that, in addition to the expected similarity between the homologous C-terminal catalytic domains, the receptor binding domains of these proteins, which share no discernible sequence homology, share a striking structural similarity. This indicates that the generation of the novel receptor binding and species specificities of these bacteriocins has been driven by diversifying selection rather than diversifying recombination as suggested previously. Additionally, the structure of syringacin M reveals the presence of an active site calcium ion that is coordinated by a conserved aspartic acid side chain and is essential for catalytic activity. We show that mutation of this residue to alanine inactivates syringacin M and that the metal ion is absent from the structure of the mutant protein. Consistent with the presence of Ca2+ in the active site, we show that syringacin M activity is supported by Ca2+, along with Mg2+ and Mn2+, and the protein is catalytically inactive in the absence of these ions.  相似文献   

10.
《Biophysical journal》2019,116(12):2400-2410
The highly charged RNA molecules, with each phosphate carrying a single negative charge, cannot fold into well-defined architectures with tertiary interactions in the absence of ions. For ribozymes, divalent cations are known to be more efficient than monovalent ions in driving them to a compact state, although Mg2+ ions are needed for catalytic activities. Therefore, how ions interact with RNA is relevant in understanding RNA folding. It is often thought that most of the ions are territorially and nonspecifically bound to the RNA, as predicted by the counterion condensation theory. Here, we show using simulations of Azoarcus ribozyme, based on an accurate coarse-grained three-site interaction model with explicit divalent and monovalent cations, that ion condensation is highly specific and depends on the nucleotide position. The regions with high coordination between the phosphate groups and the divalent cations are discernible even at very low Mg2+ concentrations when the ribozyme does not form tertiary interactions. Surprisingly, these regions also contain the secondary structural elements that nucleate subsequently in the self-assembly of RNA, implying that ion condensation is determined by the architecture of the folded state. These results are in sharp contrast to interactions of ions (monovalent and divalent) with rigid charged rods, in which ion condensation is uniform and position independent. The differences are explained in terms of the dramatic nonmonotonic shape fluctuations in the ribozyme as it folds with increasing Mg2+ or Ca2+ concentration.  相似文献   

11.
The relationship between genotype and phenotype is often described as an adaptive fitness landscape. In this study, we used a combination of recombination, in vitro selection, and comparative sequence analysis to characterize the fitness landscape of a previously isolated kinase ribozyme. Point mutations present in improved variants of this ribozyme were recombined in vitro in more than 1014 different arrangements using synthetic shuffling, and active variants were isolated by in vitro selection. Mutual information analysis of 65 recombinant ribozymes isolated in the selection revealed a rugged fitness landscape in which approximately one-third of the 91 pairs of positions analyzed showed evidence of correlation. Pairs of correlated positions overlapped to form densely connected networks, and groups of maximally connected nucleotides occurred significantly more often in these networks than they did in randomized control networks with the same number of links. The activity of the most efficient recombinant ribozyme isolated from the synthetically shuffled pool was 30-fold greater than that of any of the ribozymes used to build it, which indicates that synthetic shuffling can be a rich source of ribozyme variants with improved properties.  相似文献   

12.
We have obtained a 1.55-Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni under conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical with that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with that of previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active-site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest-resolution ribozyme structure in the Protein Data Bank.  相似文献   

13.
The relationship between formation of active in-line attack conformations and monovalent (Na+) and divalent (Mg2+) metal ion binding in hammerhead ribozyme (HHR) has been explored with molecular dynamics simulations. To stabilize repulsions between negatively charged groups, different requirements of the threshold occupancy of metal ions were observed in the reactant and activated precursor states both in the presence and in the absence of a Mg2+ in the active site. Specific bridging coordination patterns of the ions are correlated with the formation of active in-line attack conformations and can be accommodated in both cases. Furthermore, simulation results suggest that the HHR folds to form an electronegative recruiting pocket that attracts high local concentrations of positive charge. The present simulations help to reconcile experiments that probe the metal ion sensitivity of HHR catalysis and support the supposition that Mg2+, in addition to stabilizing active conformations, plays a specific chemical role in catalysis.  相似文献   

14.
Understanding the reaction mechanism of CRISPR-associated protein 9 (Cas9) is crucial for the application of programmable gene editing. Despite the availability of the structures of Cas9 in apo- and substrate-bound forms, the catalytically active structure is still unclear. Our first attempt to explore the catalytic mechanism of Cas9 HNH domain has been based on the reasonable assumption that we are dealing with the same mechanism as endonuclease VII, including the assumption that the catalytic water is in the first shell of the Mg2+. Trying this mechanism with the cryo-EM structure forced us to induce significant structural change driven by the movement of K848 (or other positively charged residue) close to the active site to facilitate the proton transfer step. In the present study, we explore a second reaction mechanism where the catalytic water is in the second shell of the Mg2+ and assume that the cryo-EM structure by itself is a suitable representation of a catalytic-ready structure. The alternative mechanism indicates that if the active water is from the second shell, then the calculated reaction barrier is lower compared with the corresponding barrier when the water comes from the first shell.  相似文献   

15.
In our previous attempt at in vitro selection of a trans - acting human hepatitis delta virus (HDV) ribozyme, we found that one of the variants, G10-68-725G, cleaved a 13 nt substrate, HDVS1, at two sites [Nishikawa,F., Kawakami,J., Chiba,A., Shirai,M., Kumar,P.K.R. and Nishikawa,S. (1996) Eur. J. Biochem., 237, 712-718]. One site was the normal cleavage site and the other site was shifted 1 nt toward the 3'-end. To clarify the interactions between nucleotides around the cleavage site of the trans -acting HDV ribozyme, we analyzed the efficiency of the reaction for every possible base pair between the substrate and the ribozyme at positions -1 (-1N:726N) and +1 (+1N:725N) relative to the cleavage site using the genomic HDV ribozyme, TdS4(Xho), and derivatives of the most active variant, G10-68. These mutagenesis analyses revealed that the +1 base of the substrate affects the structure of the catalytic core in the complex with G10-68-725G, substrate and divalent metal ions, and it shifts the cleavage site. In a comparison with other variants of the trans -acting HDV ribozyme, we found that this cleavage site shift occurred only with G10-68-725G.  相似文献   

16.
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme that catalyzes the site-specific trans-esterification reaction. Using high hydrostatic pressure (HHP) technique we showed that HDV ribozyme catalyzes the reaction of RNA cleavage in the absence of magnesium ions according to mechanism of acidic hydrolysis of esters. HHP induces changes of water structure, lowering pH and effect ribozyme catalytic site structure formation without magnesium. HHP, similarly to magnesium ion at ambient pressure stabilizes the higher order RNA structure of HDV, but Mg2+ is not involved in the catalysis. Our results clearly support the new mechanism of HDV hydrolysis and show advantages of using HHP in analysis of macromolecules interaction.  相似文献   

17.
Metal ions facilitate the folding of the hairpin ribozyme but do not participate directly in catalysis. The metal complex cobalt(III) hexaammine supports folding and activity of the ribozyme and also mediates specific internucleotide photocrosslinks, several of which retain catalytic ability. These crosslinks imply that the active core structure organized by [Co(NH3)6]3+ is different from that organized by Mg2+ and that revealed in the crystal structure [Rupert, P. B., and Ferre-D'Amare, A. R. (2001) Nature 410, 780-786] (1). Residues U+2 and C+3 of the substrate, in particular, adopt different conformations in [Co(NH3)6]3+. U+2 is bulged out of loop A and stacked on residue G36, whereas the nucleotide at position +3 is stacked on G8, a nucleobase crucial for catalysis. Cleavage kinetics performed with +2 variants and a C+3 U variant correlate with the crosslinking observations. Variants that decreased cleavage rates in magnesium up to 70-fold showed only subtle decreases or even increases in observed rates when assayed in [Co(NH3)6]3+. Here, we propose a model of the [Co(NH3)6]3+-mediated catalytic core generated by MC-SYM that is consistent with these data.  相似文献   

18.
Available evidence suggests that Mg2+ ions are involved in reactions catalyzed by hammerhead ribozymes. However, the activity in the presence of exclusively monovalent ions led us to question whether divalent metal ions really function as catalysts when they are present. We investigated ribozyme activity in the presence of high levels of Mg2+ ions and the effects of Li+ ions in promoting ribozyme activity. We found that catalytic activity increased linearly with increasing concentrations of Mg2+ ions and did not reach a plateau value even at 1 M Mg2+ ions. Furthermore, this dependence on Mg2+ ions was observed in the presence of a high concentration of Li+ ions. These results indicate that the Mg2+ ion is a very effective cofactor but that the affinity of the ribozyme for a specific Mg2+ ion is very low. Moreover, cleavage by the ribozyme in the presence of both Li+ and Mg2+ ions was more effective than expected, suggesting the existence of a new reaction pathway—a cooperative pathway—in the presence of these multiple ions, and the possibility that a Mg2+ ion with weak affinity for the ribozyme is likely to function in structural support and/or act as a catalyst.  相似文献   

19.
Thermotoga maritima tRNase Z cleaves pre-tRNAs containing the 74CCA76 sequence precisely after the A76 residue to create the mature 3′ termini. Its crystal structure has revealed a four-layer αβ/βα sandwich fold that is typically found in the metallo-β-lactamase superfamily. The well-conserved six histidine and two aspartate residues together with metal ions are assumed to form the tRNase Z catalytic center. Here, we examined tRNase Z variants containing single amino acid substitutions in the catalytic center for pre-tRNA cleavage. Cleavage by each variant in the presence of Mg2+ was hardly detected, although it is bound to pre-tRNA. Surprisingly, however, Mn2+ ions restored the lost Mg2+-dependent activity with two exceptions of the Asp52Ala and His222Ala substitutions, which abolished the activity almost completely. These results provide a piece of evidence that Asp-52 and His-222 directly contribute the proton transfer for the catalysis.  相似文献   

20.
Elucidation of the catalytic mechanism and structure—function relationship studies of the hammerhead ribozyme continue to be an area of intensive research. A combination of diverse approaches, such as X ray crystallography, spectral studies, chemical modifications, sequence variations and kinetic analyses, have provided valuable insight into the cleavage mechanism of this ribozyme. The hammerhead ribozyme crystal structures have provided valuable insight into conformational deformations needed to attain the catalytically active structure. Similarly, determination of ribozyme solution structure by spectroscopic analyses and the effect of divalent metal ions on RNA folding has further aided in the construction of a model for hammerhmead catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号