首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In seeking evidence of the existence of adaptive immune system (AIS) in ancient chordate, cDNA clones of six libraries from a protochordate, the Chinese amphioxus, were sequenced. Although the key molecules such as TCR, MHC, Ig, and RAG in AIS have not been identified from our database, we demonstrated in this study the extensive molecular evidence for the presence of genes homologous to many genes that are involved in AIS directly or indirectly, including some of which may represent the putative precursors of vertebrate AIS-related genes. The comparative analyses of these genes in different model organisms revealed the different fates of these genes during evolution. Their gene expression pattern suggested that the primitive digestive system is the pivotal place of the origin and evolution of the AIS. Our studies support the general statement that AIS appears after the jawless/jawed vertebrate split. However our study further reveals the fact that AIS is in its twilight in amphioxus and the evolution of the molecules in amphioxus are waiting for recruitment by the emergence of AIS.  相似文献   

2.
Huang G  Xie X  Han Y  Fan L  Chen J  Mou C  Guo L  Liu H  Zhang Q  Chen S  Dong M  Liu J  Xu A 《PloS one》2007,2(2):e206
To seek evidence of a primitive adaptive immune system (AIS) before vertebrate, we examined whether lymphocytes or lymphocyte-like cells and the related molecules participating in the lymphocyte function existed in amphioxus. Anatomical analysis by electron microscopy revealed the presence of lymphocyte-like cells in gills, and these cells underwent morphological changes in response to microbial pathogens that are reminiscent of those of mammalian lymphocytes executing immune response to microbial challenge. In addition, a systematic comparative analysis of our cDNA database of amphioxus identified a large number of genes whose vertebrate counterparts are involved in lymphocyte function. Among these genes, several genes were found to be expressed in the vicinity of the lymphocyte-like cells by in situ hybridization and up-regulated after exposure to microbial pathogens. Our findings in the amphioxus indicate the twilight for the emergence of AIS before the invertebrate-vertebrate transition during evolution.  相似文献   

3.
适应性免疫的起源一直是免疫学研究的关键问题.文昌鱼被认为是最接近于脊椎动物的祖先 自从被发现以来一直是研究脊椎动物起源与进化机制的经典模式动物.为了在文昌鱼中寻找适应性免疫系统的分子证据,采用金黄色葡萄球菌感染文昌鱼以调查免疫的起源.应用抑制性差减杂交(SSH)技术,通过对差减文库克隆序列的测定,共获得588个表达序列标签(EST).对这些EST进行生物信息学分析和进一步功能分类,发现了一些免疫上调基因,如免疫调控基因、凋亡相关基因、细胞黏附相关基因、转录相关基因、信号传导相关基因等,以及一些非免疫相关基因;这些基因在文昌鱼中绝大多数为首次报道.金黄色葡萄球菌差减文库的成功构建,为调查文昌鱼抗细菌感染的分子事件提供了重要线索,对于这些新发现基因的进一步研究将有助于深入了解免疫系统起源与进化的机制.  相似文献   

4.
Immune systems evolve as essential strategies to maintain homeostasis with the environment, prevent microbial assault and recycle damaged host tissues. The immune system is composed of two components, innate and adaptive immunity. The former is common to all animals while the latter consists of a vertebrate-specific system that relies on somatically derived lymphocytes and is associated with near limitless genetic diversity as well as long-term memory. Deuterostome invertebrates provide a view of immune repertoires in phyla that immediately predate the origins of vertebrates. Genomic studies in amphioxus, a cephalochordate, have revealed homologs of genes encoding most innate immune receptors found in vertebrates; however, many of the gene families have undergone dramatic expansions, greatly increasing the innate immune repertoire. In addition, domain-swapping accounts for the innovation of new predicted pathways of receptor function. In both amphioxus and Ciona, a urochordate, the VCBPs (variable region containing chitin-binding proteins), which consist of immunoglobulin V (variable) and chitin binding domains, mediate recognition through the V domains. The V domains of VCBPs in amphioxus exhibit high levels of allelic complexity that presumably relate to functional specificity. Various features of the amphioxus immune repertoire reflect novel selective pressures, which likely have resulted in innovative strategies. Functional genomic studies underscore the value of amphioxus as a model for studying innate immunity and may help reveal how unique relationships between innate immune receptors and both pathogens and symbionts factored in the evolution of adaptive immune systems.  相似文献   

5.
Dong M  Fu Y  Yu C  Su J  Huang S  Wu X  Wei J  Yuan S  Shen Y  Xu A 《Fish & shellfish immunology》2005,19(2):165-174
Expression of recombination activating genes (RAG) involved in the V (D) J recombination is regulated by the RAG1 gene activator (RGA) in mammals. The sequence of a cDNA clone from an amphioxus cDNA library was found to be homologous to that of RGA from mouse stromal cells with 45% identity. The full-length cDNA sequence comprises 1119 bp and encodes a putative protein of 210 amino acid residues. Characterisation of the amino acid sequence revealed that two MtN3 domains and seven transmembrane spans are present in this protein, indicating a potential role as a plasma membrane protein. This gene is expressed in many tissues and at differential developmental stages. A high expression level of RGA is detected in gonad tissues, and gastrula embryo and adult stages. The presence of the RGA gene in amphioxus suggests that the signal pathway required for the expression of RAG could exist in this primitive protochordate. It also implies that in the related molecules, primitive adaptive immunity may have existed in cephalochordate although the complete machinery of VDJ rearrangement may not be formed.  相似文献   

6.
Amphioxus is an important animal model for phylogenetic analysis, including comparative immunology. Exploring the immune system in amphioxus contributes to our understanding of the origin and evolution of the vertebrate immune system. We investigated the amphioxus immune system using ultrastructural examination and in situ hybridization. The expression patterns of TLR1 (toll-like receptor 1), C1Q (complement component 1, q subcomponent), ECSIT (evolutionarily conserved signaling intermediate in Toll pathways), SoxC, DDAHa (Dimethylarginine dimethylaminohydrolase a), and NOS (nitric oxide synthase) show that these genes play key roles in amphioxus immunity. Our results suggest that the epidermis and alimentary canal epithelium may play important roles in immune defense, while macrophages located in the coelom and so-called lymph spaces may also be crucial immune cells.  相似文献   

7.
Genome-wide sequence analysis in the invertebrate chordate, Ciona intestinalis, has provided a comprehensive picture of immune-related genes in an organism that occupies a key phylogenetic position in vertebrate evolution. The pivotal genes for adaptive immunity, such as the major histocompatibility complex (MHC) class I and II genes, T-cell receptors, or dimeric immunoglobulin molecules, have not been identified in the Ciona genome. Many genes involved in innate immunity have been identified, including complement components, Toll-like receptors, and the genes involved in intracellular signal transduction of immune responses, and show both expansion and unexpected diversity in comparison with the vertebrates. In addition, a number of genes were identified which predicted integral membrane proteins with extracellular C-type lectin or immunoglobulin domains and intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and immunoreceptor tyrosine-based activation motifs (ITAMs) (plus their associated signal transduction molecules), suggesting that activating and inhibitory receptors have an MHC-independent function and an early evolutionary origin. A crucial component of vertebrate adaptive immunity is somatic diversification, and the recombination activating genes (RAG) and activation-induced cytidine deaminase (AID) genes responsible for the Generation of diversity are not present in Ciona. However, there are key V regions, the essential feature of an immunoglobulin superfamily VC1-like core, and possible proto-MHC regions scattered throughout the genome waiting for Godot.  相似文献   

8.
9.
Immune‐receptor genes of the adaptive immune system, such as the major histocompatibility complex (MHC), are involved in recognizing specific pathogens and are known to have high rates of adaptive evolution, presumably as a consequence of rapid co‐evolution between hosts and pathogens. In contrast, many ‘mediating’ genes of the immune system do not interact directly with specific pathogens and are involved in signalling (e.g. cytokines) or controlling immune cell growth. As a consequence, we might expect stronger selection at immune‐receptor than mediating genes, but these two types of genes have not been compared directly in wild populations. Here, we tested the hypothesis that selection differs between MHC (class I and II) and mediating genes by comparing levels of population differentiation across the range of greater prairie‐chickens (Tympanuchus cupido). As predicted, there was stronger population differentiation and isolation by distance at immune receptor (MHC) than at either mediating genes or neutral microsatellites, suggesting a stronger role of local adaptation at the MHC. In contrast, mediating genes displayed weaker differentiation between populations than neutral microsatellites, consistent with selection favouring similar alleles across populations for mediating genes. In addition to selection, drift also had a stronger effect on immune receptor (MHC) than mediating genes as indicated by the stronger decline of MHC variation in relation to population size. This is the first study in the wild to show that the effects of selection and drift on immune genes vary across populations depending on their functional role.  相似文献   

10.
11.
Both amphioxus and the sea urchin encode a complex innate immune gene repertoire in their genomes, but the composition and mechanisms of their innate immune systems, as well as the fundamental differences between two systems, remain largely unexplored. In this study, we dissect the mucosal immune complexity of amphioxus into different evolutionary-functional modes and regulatory patterns by integrating information from phylogenetic inferences, genome-wide digital expression profiles, time course expression dynamics, and functional analyses. With these rich data, we reconstruct several major immune subsystems in amphioxus and analyze their regulation during mucosal infection. These include the TNF/IL-1R network, TLR and NLR networks, complement system, apoptosis network, oxidative pathways, and other effector genes (e.g., peptidoglycan recognition proteins, Gram-negative binding proteins, and chitin-binding proteins). We show that beneath the superficial similarity to that of the sea urchin, the amphioxus innate system, despite preserving critical invertebrate components, is more similar to that of the vertebrates in terms of composition, expression regulation, and functional strategies. For example, major effectors in amphioxus gut mucous tissue are the well-developed complement and oxidative-burst systems, and the signaling network in amphioxus seems to emphasize signal transduction/modulation more than initiation. In conclusion, we suggest that the innate immune systems of amphioxus and the sea urchin are strategically different, possibly representing two successful cases among many expanded immune systems that arose at the age of the Cambrian explosion. We further suggest that the vertebrate innate immune system should be derived from one of these expanded systems, most likely from the same one that was shared by amphioxus.  相似文献   

12.
Amphioxus is a good model organism for understanding the origin and developmental mechanism of vertebrates owing to its important evolutionary position. During the developmental process of amphioxus embryo, the neurula is a crucial stage because of neural tube and notochord formation as well as somite emergence at this stage. In order to isolate genes up-regulated at the neurula stage, we constructed an 11-hour neurula subtracted cDNA library of amphioxus Branchiostoma belcheri and sequenced 204 ESTs representing 82 contigs. Comparative analysis revealed that 55% of those contigs were homologous to various known genes while 45% of them had no significant similarity to any known genes. Those observations imply that the un-identified ESTs might contain some new genes which are involved in the development of amphioxus neurula. Real-time quantitative PCR (RTqPCR) indicated that the expression levels of 14 genes are up-regulated after gastrulation among 20 assayed genes. Of those up-regulated genes, we further cloned and sequenced the full-length of fatty acid binding protein gene (AmphiFABP). The deduced protein sequence was similar to that of vertebrate brain FABP and heart FABP, and in situ hybridization displayed that AmphiFABP, similar to their vertebrate cognates, was expressed not only in nervous system but also in embryonic somite and gut, hinting a multifunctional property of AmphiFABP in amphioxus.  相似文献   

13.
Thyroid hormones (THs) have pleiotropic effects on vertebrate development, with amphibian metamorphosis as the most spectacular example. However, developmental functions of THs in non-vertebrate chordates are largely hypothetical and even TH endogenous production has been poorly investigated. In order to get better insight into the evolution of the thyroid hormone signaling pathway in chordates, we have taken advantage of the recent release of the amphioxus genome. We found amphioxus homologous sequences to most of the genes encoding proteins involved in thyroid hormone signaling in vertebrates, except the fast-evolving thyroglobulin: sodium iodide symporter, thyroid peroxidase, deiodinases, thyroid hormone receptor, TBG, and CTHBP. As only some genes encoding proteins involved in TH synthesis regulation were retrieved (TRH, TSH receptor, and CRH receptor but not their corresponding receptors and ligands), there may be another mode of upstream regulation of TH synthesis in amphioxus. In accord with the notion that two whole genome duplications took place at the base of the vertebrate tree, one amphioxus gene often corresponded to several vertebrate homologs. However, some amphioxus specific duplications occurred, suggesting that several steps of the TH pathway were independently elaborated in the cephalochordate and vertebrate lineages. The present results therefore indicate that amphioxus is capable of producing THs. As several genes of the TH signaling pathway were also found in the sea urchin genome, we propose that the thyroid hormone signaling pathway is of ancestral origin in chordates, if not in deuterostomes, with specific elaborations in each lineage, including amphioxus.  相似文献   

14.
15.
A screen for immunity genes evolving under positive selection in Drosophila   总被引:2,自引:0,他引:2  
Genes involved in the immune system tend to have higher rates of adaptive evolution than other genes in the genome, probably because they are coevolving with pathogens. We have screened a sample of Drosophila genes to identify those evolving under positive selection. First, we identified rapidly evolving immunity genes by comparing 140 loci in Drosophila erecta and D. yakuba. Secondly, we resequenced 23 of the fastest evolving genes from the independent species pair D. melanogaster and D. simulans, and identified those under positive selection using a McDonald-Kreitman test. There was strong evidence of adaptive evolution in two serine proteases (persephone and spirit) and a homolog of the Anopheles serpin SRPN6, and weaker evidence in another serine protease and the death domain protein dFADD. These results add to mounting evidence that immune signalling pathway molecules often evolve rapidly, possibly because they are sites of host-parasite coevolution.  相似文献   

16.
Until recently, adaptive immunity and cytotoxic T cells were considered as the only essential components of the antiviral defence arsenal. Additional data that do not rule out the crucial role of these cells in the clearance of viral pathogens have, however, recently emerged. They indicate that innate immune cells such as macrophages, dendritic cells, gammadelta T cells as well as natural killer (NK) cells play a primordial role in this mechanism. It is now well established that innate immune cells can detect various pathogens (bacteria, viruses, fungi or parasites) very rapidly and respond to their presence through the activation of specific receptors. Once activated, these molecules trigger several signalling cascades that culminate in the establishment of very potent defence mechanisms. In addition, cytokines produced during this initial response are essential for the activation of the adaptive immune response which will add specificity and memory to the system. Among the innate immune receptors, attention has focused on the Toll-like receptors (TLR) and many reports indicate that some of the TLRs are clearly involved in defence against viral pathogens. However, new molecules, acting independently from any TLR, have recently been discovered. They define a second antiviral pathway which is presently the subject of intense research. In this article, we will review the role of the different molecules involved in each pathway within the framework of innate antiviral defence.  相似文献   

17.
刘欣  宋雪萤  张晓萍  韩英伦  朱婷  肖蓉  李庆伟 《遗传》2015,37(11):1149-1159
近年来,在无颌类脊椎动物七鳃鳗体内发现了以可变淋巴细胞受体(Variable lymphocyte receptors, VLR)为基础的抗原识别机制。为揭示七鳃鳗鳃黏膜免疫系统中类淋巴细胞适应性免疫应答的遗传基础,探索无颌类与有颌类脊椎动物在适应性免疫应答机制上的进化关系,本文构建了日本七鳃鳗(Lampetra japonica)鳃囊组织免疫前后cDNA文库并进行了高通量转录组测序及分析。通过对组装得到的88 525个独立基因(Unigene)进行功能注释,分别有21 704和9769个unigene在GO(Gene Ontology)和KEGG(Kyoto Encyclopedia of Genes and Genomes)数据库得到注释。999个unigene参与免疫系统的多个通路,其中184个与高等脊椎动物TCR(T cell receptor)和BCR(B cell receptor)信号通路的51个分子具有较高的同源关系,说明七鳃鳗体内存在高等脊椎动物适应性免疫应答信号通路的相关分子。本文还发现5个VLRA、7个VLRB和4个VLRC分子,说明七鳃鳗鳃黏膜免疫组织内至少分布3种类淋巴细胞亚群。实时荧光定量PCR结果显示,Lck、Fyn和Zap70基因在免疫激发后表达量显著上调,而Syk、Btk和Blnk基因表达没有显著变化,说明七鳃鳗鳃组织受到抗原刺激后,类似T淋巴细胞的信号转导途径被激活。本研究初步证明,尽管无颌类和有颌类脊椎动物的适应性免疫系统在抗原识别机制上存在不同,但具有共同的遗传基础。研究结果为探讨七鳃鳗VLRA+、VLRB+和VLRC+淋巴细胞免疫应答信号传导过程提供了有价值的线索。  相似文献   

18.
The new discipline of Evolutionary Developmental Biology (Evo-Devo) is facing the fascinating paradox of explaining morphological evolution using conserved pieces or genes to build divergent animals. The cephalochordate amphioxus is the closest living relative to the vertebrates, with a simple, chordate body plan, and a genome directly descended from the ancestor prior to the genome-wide duplications that occurred close to the origin of vertebrates. Amphioxus morphology may have remained relatively invariant since the divergence from the vertebrate lineage, but the amphioxus genome has not escaped evolution. We report the isolation of a second Emx gene (AmphiEmxB) arising from an independent duplication in the amphioxus genome. We also argue that a tandem duplication probably occurred in the Posterior part of the Hox cluster in amphioxus, giving rise to AmphiHox14, and discuss the structure of the chordate and vertebrate ancestral clusters. Also, a tandem duplication of Evx in the amphioxus lineage produced a prototypical Evx gene (AmphiEvxA) and a divergent gene (AmphiEvxB), no longer involved in typical Evx functions. These examples of specific gene duplications in amphioxus, and other previously reported duplications summarized here, emphasize the fact that amphioxus is not the ancestor of the vertebrates but 'only' the closest living relative to the ancestor, with a mix of prototypical and amphioxus-specific features in its genome.  相似文献   

19.
The oral cirri of amphioxus function as the first filter during feeding by eliminating unwanted large or noxious particulates. In this study, we were able to regenerate cirri following artificial amputation. This is the first firm observation of regeneration in amphioxus. Using this regeneration system, we studied skeletogenesis of the cellular skeleton of amphioxus oral cirri. During regeneration, the skeletal cells showed expression of fibrillar collagen and SoxE genes. These observations suggest that an evolutionarily conserved genetic regulatory system is involved in amphioxus cirrus and vertebrate cartilage skeletogenesis. In addition, Runx and SPARC/osteonectin expression were observed in regenerating cirral skeletal cells, indicating that cirral skeletogenesis is similar to vertebrate osteogenesis. We propose that the common ancestors of chordates possessed a genetic regulatory system that was the prototype of chondrogenesis and osteogenesis in vertebrates. Genome duplications caused divergence of this genetic regulatory system resulting in the emergence of cartilage and mineralized bone. The development of the vertebrate skeleton is an example of the functional segregation and subsequent recruitment of unique genetic materials that may account for the evolutionary diversification of novel cell types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号