首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine polymorphonuclear leukocytes exhibit a 12-lipoxygenase activity upon sonication. In contrast to bovine platelet 12-lipoxygenase and other 12-lipoxygenases, this enzyme is unable to convert 5(S)-HETE (5(S)-hydroxy,6-trans-8,11,14-cis-eicosatetraenoic acid) or 5(S)-HPETE (5(S)-hydroperoxy,6-trans-8,11,14-cis-eicosatetraenoic acid) into 5(S),12(S)-dihydroxy-6,10-trans,8,14-cis-eicosatetraenoic acid. Surprisingly, the formation of leukotriene A4-derived products namely leukotriene B4 and the leukotriene B4-isomers 12-epi,6-trans- leukotriene B4 and 6-trans-leukotriene B4, was observed upon incubation of this enzyme with 5(S)-HPETE. Hence, the 12-lipoxygenase from bovine polymorphonuclear leukocytes possesses leukotriene A4-synthase activity.  相似文献   

2.
Cloned 15-lipoxygenase has been expressed for the first time in eukaryotic and prokaryotic cells. Transfection of osteosarcoma cells with a mammalian expression plasmid containing the cDNA for human reticulocyte 15-lipoxygenase resulted in cell lines that were capable of oxidizing body arachidonic acid and linoleic acid. The lipoxygenase metabolites were identified by reverse-phase and straight-phase high pressure liquid chromatography, ultraviolet spectroscopy, and direct mass spectrometry, verifying that the cDNA for 15-lipoxygenase encodes an enzyme with authentic 15-lipoxygenase activity. Incubation of the transformed cells with arachidonic acid generated 15-hydroxyeicosatetraenoic acid (HETE) and 12-HETE in a ratio of 8.6 to 1, demonstrating that 15-lipoxygenase can also perform 12-lipoxygenation. Lesser amounts of 15-keto-ETE, four isomers of 8,15-diHETE, and one isomer of 14,15-diHETE were observed. Incubation with linoleic acid generated predominantly 13-hydroxy linoleic acid. The reaction was inhibited by eicosatetraynoic acid but not by indomethacin. Antibodies to a peptide corresponding to a unique region of the predicted amino acid sequence were generated and shown to react with one major band of 70 kDa on immunoblots of human leukocyte 15-lipoxygenase. To obtain antibodies to the full length enzyme, the cDNA was subcloned into a bacterial expression vector and was expressed as a fusion with the CheY protein. The overexpressed protein was readily purified from bacteria and was shown to be immunoreactive to the peptide-derived antibody. Antibodies raised to this recombinant enzyme did not cross-react with human leukocyte 5-lipoxygenase but did identify 15-lipoxygenase in rabbit reticulocytes, human leukocytes, and tracheal epithelial cells, suggesting that the 15-lipoxygenases from these different cell types are structurally related.  相似文献   

3.
We examined the characteristics of an arachidonate 12-lipoxygenase in bovine tracheal epithelial cells in relation to the enzyme expressed in leukocytes and platelets. Homogenous preparations of intact or disrupted tracheal epithelial cells metabolized arachidonic acid predominantly to (12S)-hydroxyeicosatetraenoic acid, and subcellular fractionation by differential centrifugation demonstrated that the 12-lipoxygenase activity was localized predominantly to the 100,000 x g supernatant (cytosol fraction). Analysis of cytosolic enzymatic activity for pH dependence (maximum activity at pH 7.4-8.0), divalent cation effects (no dependence on cations), and kinetic characteristics (lag phase elimination by addition of hydroperoxide) exhibited similarity to leukocyte and platelet 12-lipoxygenases. Immunoprecipitation experiments demonstrated that the epithelial 12-lipoxygenase reacted with a monoclonal antibody (lox-2) directed against leukocyte 12-lipoxygenase but not with an antibody (HPLO-3) against the platelet enzyme. Immunoaffinity chromatography of the epithelial 100,000 x g supernatant fraction using lox-2 linked to Affi-Prep 10 yielded a single predominant protein band (Mr = 72,000) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis identical in apparent mass to the bovine leukocyte lipoxygenase. Western blotting using a polyclonal antibody to leukocyte 12-lipoxygenase showed peroxidase staining of the same 72-kDa protein band. Activity assays of the purified enzymes demonstrated that substrate specificity for the epithelial 12-lipoxygenase was similar to that of the leukocyte enzyme, but the epithelial enzyme more efficiently converted 18-carbon fatty acids to the corresponding monohydroxylated conjugated dienes. We conclude that bovine tracheal epithelial cells express a 12-lipoxygenase that has immunological reactivity similar to leukocyte and distinct from platelet 12-lipoxygenase and possesses substrate specificity distinct from both enzymes. We further suggest that lipoxygenase heterogeneity may provide a basis for different functional roles for the enzyme in different cell types.  相似文献   

4.
Two different lipoxygenases have been identified in human and rat epidermis. One lipoxygenase has a (n-9)-specificity, converts arachidonic acid into 12-hydroxyeicosatetraenoic acid (12-HETE), and has been described by several investigators. Linoleic acid is not a substrate for this enzyme. The other lipoxygenase, with (n-6)-specificity, converts arachidonic acid into 15-HETE and linoleic acid into 13-hydroxyoctadecadienoic acid (13-HOD). Especially the latter lipoxygenase is thought to be involved in the regulation of the differentiation of the skin cells into a proper water-barrier layer. Linoleate is supposed to be the physiological substrate; this fatty acid is especially present in characteristic sphingolipids with unique structures.  相似文献   

5.
Arachidonate 12-lipoxygenases of porcine and bovine leukocytes were different in substrate specificity and immunogenicity from the enzyme of bovine platelets (Arch. Biochem. Biophys. (1988) 266, 613). In order to extend the comparative studies on the two types of 12-lipoxygenase, we purified the enzyme from the cytosol of human platelets by immunoaffinity chromatography to a specific activity of about 0.3 mumol/min per mg protein at 37 degrees C. The purified enzyme was active with eicosapolyenoic acids and docosahexaenoic acid. Linoleic and linolenic acids were poor substrates in contrast to the high reactivity of the leukocyte enzymes with these octadecapolyenoic acids. The finding that the human platelet enzyme catalyzed 15-oxygenation of 5S-hydroxy-6,8,11,14-eicosatetraenoic acid, raised a question if lipoxins were produced by incubation of the enzyme with leukotriene A4. However, the leukotriene A4 was scarcely transformed to lipoxin isomers by 12-lipoxygenases of human and bovine platelets. In sharp contrast, the porcine and bovine leukocyte enzymes converted leukotriene A4 to various lipoxin isomers by the reaction rates of 3% and 2% of the arachidonate 12-oxygenation. Thus, 12-lipoxygenases of human and bovine platelets were catalytically distinct from the porcine and bovine leukocyte enzymes in terms of their reactivities not only with linoleic and linolenic acids, but also with leukotriene A4 as lipoxin precursor.  相似文献   

6.
Lipoxygenases of bovine and human corneal epithelia were investigated. The bovine epithelium contained an arachidonate 12-lipoxygenase and a 15-lipoxygenase. The 12-lipoxygenase was found in the microsomal fraction, while the 15-lipoxygenase was mainly present in the cytosol (100 000 × g supernatant). 12S-Hydroxyeicosatetraenoic acid (12S-HETE) and 15S-hydroxyeicosa-tetraenoic acid (15S-HETE) were identified by GC-MS and chiral HPLC. BW A4C, an acetohydroxamic acid lipoxygenase inhibitor, reduced the biosynthesis of 12S-HETE and 15S-HETE by over 90% at 10 μ M. IC50 for the 12-lipoxygenase was 0.3 μM. The bovine corneal 12-lipoxygenase was compared with the 12-lipoxygenases of bovine platelets and leukocytes. All three enzymes metabolized 14C-labelled linoleic acid and α-linolenic acid poorly (5–16%) in comparison with [l4C]arachidonic acid. [14C]Docosahexaenoic acid and [14C]4,7,10,13,16-docosapentaenoic acid appeared to be less efficiently converted by the corneal enzyme than by the platelet and leukocyte enzymes. Immunohistochemical analysis of the bovine corneal epithelium using a polyconal antibody against porcine leukocyte 12-lipoxygenase gave positive staining. The cytosol of human corneal epithelium converted [14C]arachidonic acid to one prominent metabolite. The product co-chromatographed with 15S-HETE on reverse phase HPLC, straight phase HPLC and chiral HPLC. Our results suggest that human corneal epithelium contains a 15-lipoxygenase and that bovine corneal epithelium contains both a 15-lipoxygenase and a 12-lipoxygenase. The corneal 12-lipoxygenase appears to differ catalytically from earlier described bovine 12-lipoxygenases.  相似文献   

7.
Some studies report that endothelial cells preferentially take up the lipoxygenase-derived arachidonic acid metabolite, 5-hydroxyeicosatetraenoic acid (5-HETE), released from stimulated leukocytes (polymorphonuclear leukocytes, PMNs), whereas others report that endothelial cells preferentially take up 12-HETE released from platelets. The biological relevance of these observations, however, is unknown. Recently, we and others have found that, under basal conditions, endothelial cells, PMNs and tumor cells metabolize linoleic acid via the lipoxygenase enzyme to 13-hydroxyoctadecadienoic acid (13-HODE). We propose that endogenous levels of these metabolites regulate blood-vessel wall cell adhesion. In this study, we have measured (1) the relative binding of 5-, 12- and 15-HETE, and 13-HODE to endothelial cell monolayers, and (2) their effects on endothelial cell adhesivity with platelets, PMNs and tumor cells. There was a dose-related and specific binding of 5-[3H]HETE to endothelial cells but no binding of 12- or 15-HETE or 13-HODE. Platelet or PMN adhesion to endothelial cells was unaffected by the 5-HETE binding, but tumor cell adhesion was blocked by 40% (P less than 0.01). Interestingly, preincubation of endothelial cells with 13-HODE, 12-HETE or 15-HETE decreased platelet adhesion to endothelial cells (P less than 0.05), even though these metabolites did not bind to the endothelial cells. We conclude that 5-HETE preferentially binds to endothelial cells and interferes with a specific receptor for tumor cells, whereas the other metabolites neither bind to cells nor affect cell adhesion.  相似文献   

8.
A cell-free human polymorphonuclear leukocyte preparation containing both 15- and 5-lipoxygenase activities was found to oxygenate phosphatidylcholine at carbon-15 of the arachidonic acid moiety. No oxygenation at carbon-5 was found. Under similar incubation conditions, soybean and rabbit reticulocyte 15-lipoxygenases also oxygenated phosphatidylcholine, whereas rat basophilic leukemia cell 5-lipoxygenase, rabbit platelet 12-lipoxygenase and rat liver cytochrome P-450 preparations did not. Our results suggest that the oxygenation of phospholipids may be a unique property of the 15-lipoxygenases.  相似文献   

9.
Previous studies in our laboratory revealed a high expression of 15-lipoxygenase-1 in human colorectal carcinomas, suggesting the importance of lipoxygenase in colorectal tumor development. In this report, we have investigated the metabolism of arachidonic and linoleic acid by intestinal tissues of Min mice, an animal model for intestinal neoplasia. The polyp and normal tissues from Min mice intestine were homogenized, incubated with arachidonic or linoleic acid, and analyzed by reverse-, straight-, and chiral-phase HPLC. Arachidonic acid was converted to prostaglandins E2 and F2alpha. Little 12- or 15-hydroxyeicosatetraenoic acid was detected. Cyclooxygenase (COX)-2 was detected in polyps and the adjacent normal tissues by Western immunoblotting, but neither COX-1 nor leukocyte-type 12-lipoxygenase, the murine ortholog to human 15-lipoxygenase-1, was detected. These tissue homogenates converted linoleic acid to an equal mixture of 9(S)- and 13(S)-hydroxyoctadecadienoic acid (HODE). Inhibition of lipoxygenase activity with nordihydroguaiaretic acid blocked HODEs formation, but the COX inhibitor indomethacin did not. Degenerative-nested PCR analyses using primers encoded by highly conserved sequences in lipoxygenases detected 5-lipoxygenase, leukocyte-type 12-lipoxygenase, platelet-type 12-lipoxygenase, 8-lipoxygenase, and epidermis-type lipoxygenase-3 in mouse intestinal tissue. All of these PCR products represent known lipoxygenase that are not reported to utilize linoleic acid preferentially as substrate and do not metabolize linoleic acid to an equal mixture of 9(S)- and 13(S)-HODE. This somewhat unique profile of linoleate product formation in Min mice intestinal tissue suggests the presence of an uncharacterized and potentially novel lipoxygenase(s) that may play a role in intestinal epithelial cell differentiation and tumor development.  相似文献   

10.
12-Lipoxygenases were found in the cytosol fraction of bovine leukocytes and platelets. The bovine leukocyte enzyme was immunoprecipitable by a monoclonal antibody directed to 12-lipoxygenase of porcine leukocytes, but not by a monoclonal antibody against the human platelet enzyme. In contrast, the bovine platelet enzyme cross-reacted only with antibody against the human platelet enzyme. The leukocyte and platelet enzymes were partially purified to final specific enzyme activities of 1.1 and 0.3 mumol/min/mg protein, respectively, by immunoaffinity chromatography using each cross-reacting antibody as a ligand. The leukocyte enzyme reacted with various octadecapolyenoic acids as well as eicosapolyenoic and docosapolyenoic acids, whereas the platelet enzyme was almost inactive with octadecapolyenoic acids. Moreover, the two enzymes showed different heat-instabilities and reaction time courses. Thus, the 12-lipoxygenases of bovine leukocytes and platelets were immunologically and catalytically distinct enzymes.  相似文献   

11.
The unstable epoxide leukotriene (LT) A(4) is a key intermediate in leukotriene biosynthesis, but may also be transformed to lipoxins via a second lipoxygenation at C-15. The capacity of various 12- and 15-lipoxygenases, including porcine leukocyte 12-lipoxygenase, a human recombinant platelet 12-lipoxygenase preparation, human platelet cytosolic fraction, rabbit reticulocyte 15-lipoxygenase, soybean 15-lipoxygenase and human eosinophil cytosolic fraction, to catalyze conversion of LTA(4) to lipoxins was investigated and standardized against the ability of the enzymes to transform arachidonic acid to 12- or 15-hydroxyeicosatetraenoic acids (HETE), respectively. The highest ratio between the capacity to produce lipoxins and HETE (LX/HETE ratio) was obtained for porcine leukocyte 12-lipoxygenase with an LX/HETE ratio of 0.3. In addition, the human platelet 100000xg supernatant 12-lipoxygenase preparation and the human platelet recombinant 12-lipoxygenase and human eosinophil 100000xg supernatant 15-lipoxygenase preparation possessed considerable capacity to produce lipoxins (ratio 0.07, 0.01 and 0.02 respectively). In contrast, lipoxin formation by the rabbit reticulocyte and soybean 15-lipoxygenases was much less pronounced (LX/HETE ratios <0.002). Kinetic studies of the human lipoxygenases revealed lower apparent K(m) for LTA(4) (9-27 microM), as compared to the other lipoxygenases tested (58-83 microM). The recombinant human 12-lipoxygenase demonstrated the lowest K(m) value for LTA(4) (9 microM) whereas the porcine leukocyte 12-lipoxygenase had the highest V(max). The profile of products was identical, irrespective of the lipoxygenase used. Thus, LXA(4) and 6S-LXA(4) together with the all-trans LXA(4) and LXB(4) isomers were isolated. Production of LXB(4) was not observed with any of the lipoxygenases. The lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate was considerably more efficient to inhibit conversion of LTA(4) to lipoxins, as compared to the inhibitory effect on 12-HETE formation from arachidonic acid (IC(50) 1 and 50 microM, respectively) in the human platelet cytosolic fraction.  相似文献   

12.
Aortas from atherosclerotic rabbits have increased levels of 15-lipoxygenase, but the relationship between induction of this enzyme and the atherosclerotic process has not been defined. We found that dietary administration of cortisone acetate significantly suppressed atherosclerotic plaque formation in both Watanabe Heritable Hyperlipidemic (WHHL) and cholesterol-fed WHHL/NZW heterozygous rabbits. There was, however, no corresponding decrease in the elevated 15-lipoxygenase activity. In addition, the elevated 15-lipoxygenase activity in atherosclerotic rabbit aortas was uniformly distributed throughout the aorta, and was not preferentially localized in the lesions. These results indicate that induction of the 15-lipoxygenase is not necessarily causally related to plaque development, and that plaques are not the major source of the increased enzyme activity. However, the results confirm that hypercholesterolemia is a necessary condition for both atherosclerosis and 15-lipoxygenase induction, suggesting that perhaps the 15-lipoxygenase may represent a protective response to the hyperlipidemic stress. This possibility is supported by the finding that the induced 15-lipoxygenase converts linoleic acid, which is the predominant essential fatty acid in aorta, to 13-hydroxyoctadecadienoic acid (13-HODE). This compound is a chemorepellant factor for platelets, inhibits platelet thromboxane synthesis, and stimulates prostacyclin synthesis by endothelial cells.  相似文献   

13.
The principal in vivo oxygenase products of arachidonic acid and linoleic acid in psoriatic skin scales are 12-hydroxyeicosatetraenoic acid (R/S ratio = 5.7), 13-hydroxyoctadecadienoic acid (S/R = 1.9), and 9-hydroxyoctadecadienoic acid (R/S = 2.4). Definition of the enzymatic origin of these fatty acid derivatives is an important step in assessing their possible role in the pathogenesis of psoriasis. Psoriatic skin scales were incubated with radiolabeled arachidonic acid and linoleic acid and the monohydroxylated derivatives produced in vitro were characterized. The products of incubation with [3H]arachidonic acid were an enantiopure 15(S)-[3H]hydroxyeicosatetraenoic acid and a nonracemic mixture of the 12-[3H]hydroxyeicosatetraenoic acid steroisomers (R/S ratio = 4.5). An enantiopure 13(S)-[14C]hydroxyoctadecadienoic acid was produced from [14C]linoleic acid. No radiolabeled products were derived from incubations with heat-denatured scales. These results provide evidence for two distinct oxygenase activities that are preserved in psoriatic skin scales. One is that of an omega-6 oxygenase with strict (S) stereospecificity, consistent with the activity of a lipoxygenase. This enzyme activity appears to be similar to that of the 15-lipoxygenase which has been described in cultured human keratinocytes. The second activity is that of an arachidonic acid 12(R)-oxygenase that has not been observed in normal human epidermis but which appears to be expressed in psoriatic epidermis.  相似文献   

14.
Oxidatively-modified low density lipoprotein (LDL) is thought to play a significant role in the formation of lipid-laden macrophages, the primary cellular component of atherosclerotic fatty lesions. Recently, lipoxygenases have been implicated as a major enzymatic pathway involved in rabbit endothelial cell-mediated LDL modification. We investigated the effect of LDL on porcine aortic endothelial cell (PAEC) and human umbilical vein (HUVEC) and aortic endothelial cell (HAEC) lipoxygenase activity. By thin layer chromatography, we observed that human LDL stimulated the metabolism of radiolabeled arachidonic acid to 12 + 15-hydroxyeicosatetraenoic acid (HETE) in indomethacin-treated PAEC. Furthermore, radiolabeled linoleic acid, a specific substrate for the 15-lipoxygenase, was metabolized to its respective product 13-hydroxyoctadecadienoic acid (13-HODE) in the presence of LDL. Increased product formation in both studies was inhibited by the lipoxygenase blockers nordihydroguaiaretic acid (NDGA) and RG 6866. 15-HETE was confirmed as the predominant HETE product in LDL-treated cells by high performance liquid chromatography. Both porcine- and human-derived LDL stimulated the CL release of 15-HETE from cells as determined by radioimmunoassay. Release of immunoreactive 15-HETE was inhibited by NDGA, RG 6866, and 5,8,11,14-eicosatetraynoic acid (ETYA) but not by the selective 5-lipoxygenase inhibitor RG 5901. These lipoxygenase inhibitors had similar effects on the modification of LDL. Our results suggest that the oxidative modification of LDL by endothelial cells may be mediated in part through activation of 15-lipoxygenase.  相似文献   

15.
Characterization of the stereospecificity of the derivatives of arachidonic acid and linoleic acid produced by endothelial cells is needed to define the enzymatic origin of these compounds and their role in vascular physiology. In studies utilizing two bovine endothelial cell lines (CPAE and AG04762), both free 15-hydroxyeicosatetraenoic acid (15-HETE) and 11-hydroxyeicosatetraenoic acid (11-HETE) were generated during incubations with exogenous arachidonic acid and both free 9-hydroxyoctadecadienoic acid (9-HODE) and 13-hydroxyoctadecadienoic acid (13-HODE) were generated during incubations with exogenous linoleic acid. Esterification of 15-HETE, 9-HODE and 13-HODE during these incubations was demonstrated. The analyses included reversed-phase high performance liquid chromatography of the free acid and its methyl ester and chiral separation of the methyl ester on straight phase chiral columns. The ratio of 9-HODE/13-HODE averaged 2.7 in the chromatographic analyses of the extracts of the incubations with linoleic acid. The combined production of 13-HODE and 9-HODE from linoleic acid was four times greater than that of 15-HETE and 11-HETE from arachidonic acid. With regard to the products of the CPAE endothelial cell line, the S/R ratio of the stereoisomers averaged 1.5 for free 15-HETE, 5.7 for free 13-HODE and 0.2 for free 9-HODE. The 11-HETE had strict (R) stereospecificity. The products from the AG04762 endothelial cell line had similar stereochemistry. All these stereochemical findings point to the activity of a cyclooxygenase rather than that of a lipoxygenase.  相似文献   

16.
12-Lipoxygenase and cyclooxygenase 1 are the dominating enzymes that metabolize arachidonic acid in human platelets. In addition to the conversion of arachidonic acid to 12(S)-hydroxyeicosatetraenoic acid, 12-lipoxygenase can also utilize 5(S)-hydroxyeicosatetraenoic acid and 15(S)-hydroxyeicosatetraenoic acid to form 5(S), 12(S)-dihydroxyeicosatetraenoic acid and 14(R), 15(S)-dihydroxyeicosatetraenoic acid, respectively. Furthermore, 15(S)-hydroxyeicosatetraenoic acid works as an inhibitor for 12-lipoxygenase. In the present paper we have studied the influence of albumin on the in vitro metabolism of 5 - and 15 -hydroxyeicosatetraenoic acids, and 5,15 -dihydroxyeicosatetraenoic acid by the platelet 12-lipoxygenase. The presence of albumin reduced the formation of 5(S),12(S)- dihydroxyeicosatetraenoic acid from 5(S)-hydroxyeicosatetraenoic acid, however, it had no effect on the 12(S)-hydroxyeicosatetraenoic acid production from endogenous arachidonic acid. In contrast, when 15(S)-hydroxyeicosatetraenoic acid was incubated with activated platelets, the formation of 14(R), 15(S)- dihydroxyeicosatetraenoic acid was stimulated by the presence of albumin. Furthermore, albumin reduced the inhibitory action 15(S)-hydroxyeicosatetraenoic acid had on 12(S)-hydroxyeicosatetraenoic acid formation from endogenous arachidonic acid. However, addition of exogenous arachidonic acid (20 microm) to the incubations inverted the effects of albumin on the conversion of 15(S)-hydroxyeicosatetraenoic acid to 14(R),15(S)- dihydroxyeicosatetraenoic acid and the production of 12(S)-hydroxyeicosatetraenoic acid in these incubations. Based on the Scatchard equation, the estimates of the binding constants to albumin were 1.8 x 10(5) for 15 -HETE, 1.4 x 10(5) for 12-HETE, and 0.9 x 10(5) for 5 -HETE respectively. These results suggest an important role of albumin for the regulation of the availability of substrates for platelet 12-lipoxygenase.  相似文献   

17.
Porcine neutrophilic leukocytes were found to contain a lipoxygenase which converted linoleic acid into 13-hydroxy-9,11-octadecadienoic acid (n-6 specificity), arachidonic acid into 12-hydroxy-5,8,10,14-eicosatetraenoic acid (n - 9 specificity) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid into 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid. This lipoxygenase was partially purified and it appeared that its substrate specificity and other properties were quite different from the 12-lipoxygenase of blood platelets. Incubations of intact or broken porcine leukocytes with added linoleic acid revealed the formation of not only 13-hydroxy-9,11-octadecadienoic acid but also of substantial amounts of epoxyhydroxy and trihydroxy isomers. These products from linoleate, collectively described by the name 'octadecanoids' were characterized in detail by a combination of chemical, chromatographic and mass spectrometric techniques. The phospholipids of porcine leukocytes contain more than twice as much linoleate than arachidonate (22 vs. 8%). In accordance with this fatty acid composition we found that in the stimulated neutrophil the endogenous production of octadecanoids often surpassed that of the eicosanoids. Lipoxygenation of endogenously liberated linoleic acid was especially pronounced when a suspension of leukocytes in citrated plasma was recalcified and allowed to clot.  相似文献   

18.
Human reticulocyte 15-lipoxygenase (15-hLO-1) and epithelial 15-lipoxygenase (15-hLO-2) have been implicated in a number of human diseases, with differences in their substrate specificity potentially playing a central role. In this paper, we present a novel method for accurately measuring the substrate specificity of the two 15-hLO isozymes and demonstrate that both cholate and specific LO products affect substrate specificity. The linoleic acid (LA) product, 13-hydroperoxyoctadienoic acid (13-HPODE), changes the ( k cat/ K m) (AA)/( k cat/ K m) (LA) ratio more than 5-fold for 15-hLO-1 and 3-fold for 15-hLO-2, while the arachidonic acid (AA) product, 12-( S)-hydroperoxyeicosatetraenoic acid (12-HPETE), affects only the ratio of 15-hLO-1 (more than 5-fold). In addition, the reduced products, 13-( S)-hydroxyoctadecadienoic acid (13-HODE) and 12-( S)-hydroxyeicosatetraenoic acid (12-HETE), also affect substrate specificity, indicating that iron oxidation is not responsible for the change in the ( k cat/ K m) (AA)/( k cat/ K m) (LA) ratio. These results, coupled with the dependence of the 15-hLO-1 k cat/ K m kinetic isotope effect ( (D) k cat/ K m) on the presence of 12-HPETE and 12-HETE, indicate that the allosteric site, previously identified in 15-hLO-1 [Mogul, R., Johansen, E., and Holman, T. R. (1999) Biochemistry 39, 4801-4807], is responsible for the change in substrate specificity. The ability of LO products to regulate substrate specificity may be relevant with respect to cancer progression and warrants further investigation into the role of this product-feedback loop in the cell.  相似文献   

19.
The current study assessed the differential incorporation of 12-hydroperoxyeicosatetraenoic acid (12-HPETE), arachidonic acid (AA), 12-hydroxyeicosatetraenoic acid (12-HETE) and the linoleic acid (LA) oxidation products, 13-hydroxyoctadecadienoic acid (13-HODE) and 13-hydroperoxyoctadecadienoic acid (13-HPODE), into human umbilical vein endothelial cells (HUVEC). Approximately 80-90% of AA (10(-8)-10(-5)M) and 80% of LA (10(-8)-10(-5)M) were incorporated into HUVEC within 12h, while less than 50% of the hydroxy metabolites (12-HETE, 12-HPETE, 13-HODE, 13-HPODE) were incorporated into HUVEC over 48h. Further, treatment of HUVEC with either 12-HPETE or 13-HPODE (concentrations of 10(-5)M) had no effect on cell number at a 48h time point when compared with control. These results demonstrate that exogeneous hydroxy metabolites are incorporated into HUVEC to a lesser degree than were endogenous fatty acids. Further, we speculate that 12-HPETE and 13-HPODE are rapidly metabolized to substances without significant cytotoxic effects.  相似文献   

20.
We have recently demonstrated a novel cytotoxic effect of human platelets against Toxoplasma gondii and a role for thromboxane (TX) in this process (Yong et al., 1991). We now report on the spectrum of lipid mediators released by human platelets after interaction with T. gondii. In addition to TXB2, human platelets after incubation with T. gondii for 90 min released 12-hydroxyheptadecatrienoic acid (12-HHT), 12-hydroxyeicosatetraenoic acid (12-HETE), and an unidentified peak (UVmax 234 nm) as determined by reverse-phase high-performance liquid chromatography. Thermospray-liquid chromatography/mass spectrometry analysis and straight-phase HPLC identified the unknown peak as a mixture of 13-hydroxyoctadecadienoic acid (HODE) and 9-HODE. Radiolabeling studies with [14C]linoleic acid indicated that the platelets were the cellular source of the octadecanoids with 13-HODE (87.7%) greater than 9-HODE (12.3%). Inhibitor studies with indomethacin indicated that 13-HODE was a lipoxygenase product and 9-HODE was a cyclooxygenase product of linoleic acid. Thus, Toxoplasma-stimulated platelets release oxygenated products of both arachidonic acid and linoleic acid which may be important in the host response to T. gondii infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号