首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombination at the Rp1 locus of maize.   总被引:11,自引:0,他引:11  
Summary The Rp1 locus of maize determines resistance to races of the maize rust fungus (Puccinia sorghi). Restriction fragment length polymorphism markers that closely flank Rp1 were mapped and used to study the genetic fine structure and role of recombination in the instability of this locus. Susceptible progeny, lacking the resistance of either parent, were obtained from test cross progeny of several Rp1 heterozygotes. These susceptible progeny usually had non-parental genotypes at flanking marker loci, thereby verifying their recombinational origin. Seven of eight Rp1 alleles (or genes) studied were clustered within about 0.2 map units of each other. Rpl G, however, mapped from 1–3 map units distal to other Rp1 alleles. Rp5 also mapped distally to most Rp1 alleles. Other aspects of recombination at Rp1 suggested that some alleles carry duplicated sequences, that mispairing can occur, and that unequal crossing-over may be a common phenomenon in this region; susceptible progeny from an Rp1 A homozygote had recombinant flanking marker genotypes, and susceptible progeny from an Rp1 DlRp1 F heterozygote showed both possible nonparental flanking marker genotypes.  相似文献   

2.
Hu G  Richter TE  Hulbert SH  Pryor T 《The Plant cell》1996,8(8):1367-1376
The rp1 locus of maize controls race-specific resistance to the common rust fungus Puccinia sorghi. Four mutant or recombinant Rp1 alleles (rp1-NC3, Rp1-D21, Rp1-MD19, and Rp1-Kr1N) were identified. They condition necrotic phenotypes in the absence of the rust pathogen. These Rp1 lesion mimics fall into three different phenotypic classes: (1) The rp1-NC3 and Rp1-D21 alleles require rust infection or other biotic stimulus to initiate necrotic lesions. These alleles react strongly to all maize rust biotypes tested and also to nonhost rusts. (2) The Rp1-MD19 allele, which has a similar phenotype, also requires a biotic stimulus to initiate lesions. However, Rp1-MD19 shows the race specificity of the Rp1-D gene. (3) The Rp1-Kr1N allele specifies a diffuse necrotic phenotype in the absence of any biotic stimulus and a race-specific reaction when inoculated with maize rust.  相似文献   

3.
The Rp1 region of maize was originally characterized as a complex locus which conditions resistance to the fungus Puccinia sorghi, the causal organism in the common rust disease. Some alleles of Rp1 are meiotically unstable, but the mechanism of instability is not known. We have studied the role of recombination in meiotic instability in maize lines homozygous for either Rp1-J or Rp1-G. Test cross progenies derived from a line that was homozygous for Rp1-J, but heterozygous at flanking markers, were screened for susceptible individuals. Five susceptible individuals were derived from 9772 progeny. All five had nonparental combinations of flanking markers; three had one combination of recombinant flanking markers while the other two had the opposite pair. In an identical study with Rp1-G, 20 susceptible seedlings were detected out of 5874 test cross progeny. Nineteen of these were associated with flanking marker exchange, 11 and 8 of each recombinant marker combination. Our results indicate that unequal exchange is the primary mechanism of meiotic instability of Rp1-J and Rp1-G.  相似文献   

4.
Leaf rust, caused by Puccinia triticina, is one of the most damaging diseases of wheat worldwide. Lr16 is a widely deployed leaf rust resistance gene effective at the seedling stage. Although virulence to Lr16 exists in the Canadian P. triticina population, Lr16 provides a level of partial resistance in the field. The primary objective of this study was to identify markers linked to Lr16 that are suitable for marker-assisted selection (MAS). Lr16 was tagged with microsatellite markers on the distal end of chromosome 2BS in three mapping populations. Seven microsatellite loci mapped within 10 cM of Lr16, with the map distances varying among populations. Xwmc764 was the closest microsatellite locus to Lr16, and mapped 1, 9, and 3 cM away in the RL4452/AC Domain, BW278/AC Foremost, and HY644/McKenzie mapping populations, respectively. Lr16 was the terminal locus mapped in all three populations. Xwmc764, Xgwm210, and Xwmc661 were the most suitable markers for selection of Lr16 because they had simple PCR profiles, numerous alleles, high polymorphism information content (PIC), and were tightly linked to Lr16. Twenty-eight spring wheat lines were evaluated for leaf rust reaction with the P. triticina virulence phenotypes MBDS, MBRJ, and MGBJ, and analyzed with five microsatellite markers tightly linked to Lr16. There was good agreement between leaf rust infection type (IT) data and the microsatellite allele data. Microsatellite markers were useful for postulating Lr16 in wheat lines with multiple leaf rust resistance genes.  相似文献   

5.
Rust is a serious fungal disease in the sunflower growing areas worldwide with increasing importance in North America in recent years. Several genes conferring resistance to rust have been identified in sunflower, but few of them have been genetically mapped and linked to molecular markers. The rust resistance gene R 4 in the germplasm line HA-R3 was derived from an Argentinean open-pollinated variety and is still one of most effective genes. The objectives of this study were to determine the chromosome location of the R 4 gene and the allelic relationship of R 4 with the R adv rust resistance gene. A total of 63 DNA markers previously mapped to linkage group (LG) 13 were used to screen for polymorphisms between two parental lines HA 89 and HA-R3. A genetic map of LG 13 was constructed with 21 markers, resulting in a total map length of 93.8 cM and an average distance of 4.5 cM between markers. Two markers, ZVG61 and ORS581, flanked the R 4 gene at 2.1 and 0.8 cM, respectively, and were located on the lower end of LG 13 within a large NBS-LRR cluster identified previously. The PCR pattern generated by primer pair ZVG61 was unique in the HA-R3 line, compared to lines HA-R1, HA-R4, and HA-R5, which carry other R 4 alleles. A SCAR marker linked to the rust resistance gene R adv mapped to LG 13 at 13.9 cM from the R 4 locus, indicating that R adv is not an allele of the R 4 locus. The markers tightly linked to the R 4 gene will facilitate gene pyramiding for rust resistance breeding of sunflower.  相似文献   

6.
Rp1 is a disease resistance complex and is the terminal morphological marker on the short arm of maize chromosome 10. Several restriction fragment length polymorphisms (RFLPs), which map within 5 map units of Rp1, were examined to determine if they are also complex in structure. Two RFLP loci, which mapped distally to Rp1, BNL3.04 and PIO200075, existed in a single copy in all maize lines examined. These two loci cosegregated perfectly in 130 test cross progeny. Two RFLP loci that map proximally to Rp1 had unusual structures, which have not yet been reported for maize RFLPs; the loci were complex, with variable numbers of copies in different maize lines. One of the loci, NPI285, occasionally recombined in meiosis to yield changes in the number of copies of sequences homologous to the probe. The other proximal locus, detected by the probes NPI422, KSU3, and KSU4, was relatively stable in meiosis and no changes in the number of restriction fragments were observed. The similarity in map position between Rp1 and the complex RFLP loci indicate there may be genomic areas where variable numbers of repeated sequences are common. The structure of these complex loci may provide insight into the structure and evolution of Rp1.  相似文献   

7.
The dominant allele Gro1 confers on potato resistance to the root cyst nematode Globodera rostochiensis. The Gro1 locus has been mapped to chromosome VII on the genetic map of potato, using RFLP markers. This makes possible the cloning of Gro1 based on its map position. As part of this strategy we have constructed a high-resolution genetic map of the chromosome segment surrounding Gro1, based on RFLP, RAPD and AFLP markers. RAPD and RFLP markers closely linked to Gro1 were selected by bulked segregant analysis and mapped relative to the Gro1 locus in a segregating population of 1105 plants. Three RFLP and one RAPD marker were found to be inseparable from the Gro1 locus. Two AFLP markers were identified that flanked Gro1 at genetic distances of 0.6 cM and 0.8 cM, respectively. A genetic distance of 1 cM in the Gro1 region corresponds to a physical distance of ca. 100 kb as estimated by long-range restriction analysis. Marker-assisted selection for nematode resistance was accomplished in the course of constructing the high-resolution map. Plants carrying the resistance allele Gro1 could be distinguished from susceptible plants by marker assays based on the polymerase chain reaction (PCR).  相似文献   

8.
Fusarium wilt is a widespread and serious chickpea disease caused by the soil-borne fungus Fusarium oxysporum f.sp. ciceri (Foc). We evaluated an F9 recombinant inbred line population of chickpea for resistance to three Foc races (1, 2 and 3) in pot culture experiments and identified flanking and tightly linked DNA markers for the resistance genes. The simple sequence repeat markers H3A12 and TA110 flanked the Foc1 locus at 3.9 and 2.1 cM, respectively, while Foc2 was mapped 0.2 cM from TA96 and 2.7 cM from H3A12. The H1B06y and TA194 markers flanked the Foc3 locus at 0.2 and 0.7 cM, respectively. These markers were also validated using 16 diverse chickpea genotypes. Identification of tightly linked flanking markers for wilt resistance genes will be useful for their exploitation in breeding programs and to understand the mechanism of resistance and evolution of the genes. S. J. M. Gowda and P. Radhika contributed equally to this study.  相似文献   

9.
We constructed a genetic linkage map based on a cross between two Swiss winter wheat (Triticum aestivum L.) varieties, Arina and Forno. Two-hundred and forty F5 single-seed descent (SSD)-derived lines were analysed with 112 restriction fragment length polymorphism (RFLP) anonymous probes, 18 wheat cDNA clones coding for putative stress or defence-related proteins and 179 simple-sequence repeat (SSR) primer-pairs. The 309 markers revealed 396 segregating loci. Linkage analysis defined 27 linkage groups that could all be assigned to chromosomes or chromosome arms. The resulting genetic map comprises 380 loci and spans 3,086 cM with 1,131 cM for the A genome, 920 cM for the B genome and 1,036 cM for the D genome. Seventeen percent of the loci showed a significant (P < 0.05) deviation from a 1:1 ratio, most of them in favour of the Arina alleles. This map enabled the mapping of QTLs for resistance against several fungal diseases such as Stagonospora glume blotch, leaf rust and Fusarium head blight. It will also be very useful for wheat genetic mapping, as it combines RFLP and SSR markers that were previously located on separate maps. S. Paillard and T. Schnurbusch contributed equally to the work  相似文献   

10.
A map-based cloning scheme is being used to isolate the jointless (j) gene of tomato. The jointless locus is defined by a single recessive mutation that completely suppresses the formation of the fruit and flower pedicel and peduncle abscission zone. jointless was mapped in an F2 population of an interspecific cross between Lycopersicon esculentum and Lycopersicon pennellii to a 7.1 cM interval between two restriction fragment length polymorphism (RFLP) markers TG523 and TG194. Isogenic DNA pools were then constructed from a subset of the mapping population and screened with 800 random decamers for random amplification of polymorphic DNA (RAPD) polymorphisms. Five new RAPD markers were isolated and mapped to chromosome 11, two of which were mapped within the targeted interval. One marker, RPD158, was mapped 1.5 cM to the opposite side of jointless relative to TG523 and thus narrowed the interval between the closest flanking markers to 3.0 cM. Physical mapping by pulse-field gel electrophoresis using TG523 and RPD158 as probes demonstrated that both markers hybridize to a common 600 kb SmaI restriction fragment. This provided an estimate of 200 kb/cM for the relationship between physical and genetic distances in the region of chromosome 11 containing the j locus. The combined results provide evidence for the feasibility of the next step toward isolation of the jointless gene by map-based cloning — a chromosome walk or jump to jointless.  相似文献   

11.
 The objective of this study was to determine the genetic basis of resistance to maize mosaic virus (MMV). Molecular markers were used to map resistance loci to MMV in a set of 91 maize (Zea mays L.) recombinant inbred lines (RILs), derived from the cross between Hi31 (a B68 conversion resistant to MMV) and Kil4 (a Thai inbred susceptible to MMV). The RILs were evaluated for MMV resistance in disease nurseries in Hawaii in the winter of 1993 and the summer of 1994. Twenty-eight highly susceptible RILs were chosen for gene mapping using the pooled-sampling approach. Initial evidence from the pooled DNA indicated that restriction fragment length polymorphism (RFLP) probes on chromosome 3 near the centromere were biased to the susceptible parent allele. Analysis of 91 RILs at 103 RFLP loci confirmed the presence of a major MMV resistance gene on chromosome 3. The resistant allele at this locus, previously named Mv1, is present in the resistant parent Hi31 and traces back to the Argentine parent used in conferring common rust resistance to B68. We conclude that resistance to MMV in B68 and Caribbean flints involves a major gene mv1 on chromosome 3 located between RFLP markers umc102 and php20508. Received: 12 June 1996 / Accepted: 5 July 1996  相似文献   

12.
Photoperiod-sensitive genic male-sterile (PSGMS) rice, in which pollen fertility is regulated by day-length, originally arose as a natural mutant in the rice cultivar Nongken 58 (Oryza sativa ssp. japonica). Previous studies identified pms3 on chromosome 12 as the locus of the original PSGMS mutation. In this study we have assigned the pms3 locus to a 28.4-kb DNA fragment by genetic and physical mapping. A cross between Nongken 58S (PSGMS line) and DH80 was used to produce an F2 population of about 7000 plants, from which 892 highly sterile individuals were obtained for recombination analysis. By analyzing recombination events in the sterile individuals using a total of 157 RFLP probes from a BAC contig covering the pms3 region, the pms3 locus was localized to a sub-region of less than 1.7 cM. Further analysis of recombination events using 49 additional probes isolated from this sub-region identified markers flanking the pms3 region on each side; these markers are only 28.4-kb apart. Sequence analysis of this fragment predicted the presence of five ORFs, found high homology with two ESTs in public databases, and detected three SNPs between the mutant and the wild-type parents, which may be helpful for identifying a candidate gene for pms3.  相似文献   

13.
 Cytoplasmic male sterility (CMS) is the maternally inherited inability to produce functional pollen. The Rf3 allele of the nuclear gene rf3 gametophytically restores male fertility to maize plants with the S-type of CMS. The rf3 locus is on the long arm of maize chromosome two (2L). Using 2L RFLPs and three-point mapping analysis we showed that the rf3 locus is located an estimated 4.3 cM distal to the whp locus and 6.4 cM proximal to the bnl17.14 locus. This information was used in combination with RFLPs on two additional maize chromosomes to show that Rf3/rf3 CMS-S plants may aberrantly transmit the nonrestoring allele, rf3, through the male gametophyte. Received: 30 September 1996/Accepted: 21 March 1997  相似文献   

14.
We present here a detailed physical map encompassing over 600 kb of mouse Chromosome (Chr) 17 in the region of plasminogen, D17Rp17e, and quaking. This region is cloned in yeast artificial chromosomes (YACs). We have identified several CpG islands within this region from pulsed field gel mapping of mouse genomic DNA and YAC DNA. Five new DNA probes have been generated. One, D17Leh514, is a minimum of about 90 kb distal to plasminogen. Four, D17Leh513, D17Leh512, D17Leh511, and D17Leh510, are proximal to D17Rp17e, the closest previously described genetic marker to quakingviable and quakinglethal-1 mutations. We have genetically mapped D17Leh511 to within 0.15 cM of these mutations. The genetic distance to D17Rp17e from D17Leh511 is also 0.15 cM; the physical distance of less than 360 kb (minimum 200 kb) is consistent with an approximation of 2 Mbp per cM.  相似文献   

15.
A genetic linkage map for loblolly pine (Pinus taeda L.) was constructed using segregation data from a three-generation outbred pedigree consisting of four grandparents, two parents, and 95 F2 progeny. The map was based predominantly on restriction fragment length polymorphism (RFLP) loci detected by cDNA probes. Sixty-five cDNA and three genomic DNA probes revealed 90 RFLP loci. Six polymorphic isozyme loci were also scored. One-fourth (24%) of the cDNA probes detected more than 1 segregating locus, an indication that multigene families are common in pines. As many as six alleles were observed at a single segregating locus among grandparents and it was not unusual for the progeny to segregate for three or four alleles per locus. Multipoint linkage analysis placed 73 RFLP and 2 isozyme loci into 20 linkage groups; the remaining 17 RFLP and 4 isozyme loci were unlinked. The mapped RFLP probes provide a new set of codominant markers for genetic analyses in loblolly pine.  相似文献   

16.
 A high-density genetic map of the rice blast fungus Magnaporthe grisea (Guy11×2539) was constructed by adding 87 cosmid-derived RFLP markers to previously generated maps. The new map consists of 203 markers representing 132 independently segregating loci and spans approximately 900 cM with an average resolution of 4.5 cM. Mapping of 33 cosmid probes from the genetic map generated by Sweigard et al. has allowed the integration of two M. grisea maps. The integrated map showed that the linear order of markers along all seven chromosomes in both maps is in good agreement. Thirty of eighty seven markers were derived from cosmid clones that contained the retrotransposon MAGGY (M. grisea gypsy element). Mapping of single-copy DNA sequences associated with the MAGGY cosmids indicated that MAGGY elements are scattered throughout the fungal genome. In eight cases, the probes associated with MAGGY elements showed abnormal segregation patterns. This suggests that MAGGY may be involved in genomic rearrangements. Two RFLP probes linked to MAGGY elements, and another flanking other repetitive DNA elements, identified sequences that were duplicated in the Guy11 genome. Most of the MAGGY cosmids also contained other classes of repetitive DNA suggesting that repetitive DNA sequences tend to cluster in the M. grisea genome. Received: 17 February 1997 / Accepted: 21 February 1997  相似文献   

17.
A positional cloning strategy is being implemented in Populus for the isolation of the dominant MXC3 allele, which confers resistance to poplar leaf rust caused by Melampsora×columbiana (pathotype 3). AFLP markers were used to saturate the chromosomal region around the MXC3 locus in a large (n=1,902) Populus trichocarpa×P. deltoides (T×D) mapping pedigree segregating 1:1 for rust resistance and susceptibility. The high-resolution linkage map developed around the MXC3 locus contains 19 AFLP markers and spans a genetic distance of 2.73 cM. Of the 19 AFLP markers, seven were found to co-segregate with the locus. One co-segregating AFLP marker, CCG.GCT_01, was converted to an STS marker (BVS1) and used to identify a physical contig of overlapping BAC clones from the MXC3 region. Genetic and physical mapping of markers isolated from the BAC contig failed to delimit the MXC3 locus within a 300-kb interval defined by the overlapping BAC clones. This result indicates a >25-fold reduction in recombination frequency in the MXC3 region compared to the average rate of recombination for the Populus genome. Received: 8 December 2000 / Accepted: 1 March 2001  相似文献   

18.
Barley stripe rust, caused by Puccinia striiformis f. sp. hordei, is one of the most important barley (Hordeum vulgare) diseases in the United States. The disease is best controlled using resistant cultivars. Barley genotype Grannenlose Zweizeilige (GZ) has a recessive gene (rpsGZ) that is effective against all races of P. striiformis f. sp. hordei identified so far in the USA. To develop a molecular map for mapping the gene, F8 recombinant inbred lines (RILs) were developed from the Steptoe X GZ cross through single-seed descent. Seedlings of the parents and RILs were evaluated for resistance to races PSH-14 and PSH-54 of P. striiformis f. sp. hordei under controlled greenhouse conditions. Genomic DNA was extracted from the parents and 182 F8 RILs and used for linkage analysis. The resistance gene analog polymorphism (RGAP) technique was used to identify molecular markers for rpsGZ. A linkage group for the gene was constructed with 12 RGAP markers, of which two markers co-segregated with the resistance locus, and two markers were closely linked to the locus with a genetic distance of 0.9 and 2.0 cM, respectively. These four markers were present only in the susceptible parent. The closest marker to the resistance allele was 11.7 cM away. Analyses of two sets of barley chromosome addition lines of wheat with the two RGAP markers that were cosegregating with the susceptibility allele showed that rpsGZ and the markers were located on the long arm of barley chromosome 4H. Further, tests with four simple sequence repeat (SSR) markers confirmed the chromosomal location of the rpsGZ gene and also integrated the RGAP markers into the known SSR-based linkage map of barley. The closest SSR marker EBmac0679 had a genetic distance of 7.5 cM with the gene in the integrated linkage map constructed with the 12 RGAP markers and 4 SSR markers. The information on chromosomal location and molecular markers for rpsGZ should be useful for incorporating this gene into commercial cultivars and combining it with other resistance genes for durable resistance.  相似文献   

19.
The leaf rust resistance gene Lr25, transferred from Secale cereale L. into wheat and located on chromosome 4B, imparts resistance to all pathotypes of leaf rust in South-East Asia. In an F2-derived F3 population, created by crossing TcLr25 that carries the gene Lr25 for leaf rust resistance with leaf rust-susceptible parent Agra Local, three microsatellite markers located on the long arm of chromosome 4B were found to be linked to the Lr25 locus. The donor parent TcLr25 is a near-isogenic line derived from the variety Thatcher. The most virulent pathotype of leaf rust in the South-East Asian region, designated 77–5 (121R63-1), was used for challenging the population under artificially controlled conditions. The marker Xgwm251 behaved as a co-dominant marker placed 3.8 cM away from the Lr25 locus on 4BL. Two null allele markers, Xgwm538 and Xgwm6, in the same linkage group were located at a distance of 3.8 cM and 16.2 cM from the Lr25 locus, respectively. The genetic sequence of Xgwm251, Lr25, Xgwm538, and Xgwm6 covered a total length of 20 cM on 4BL. The markers were validated for their specificity to Lr25 resistance in a set of 43 wheat genetic stocks representing 43 other Lr genes.  相似文献   

20.
t-haplotypes occupy a region on chromosome (Chr) 17 which slightly overlaps the ends of theT-H-2 interval. The wild-type form of this 14 centi-Morgan (cM) region was mapped in a multilocus backcross (C57BL/10-T×C3H)F1×C57BL/10 using 15 DNA probes on Southern blots of the DNA extracted from 53 animals which were recombinants in theT-H-2 interval. Each recombinant was also progenytested to ascertain itsHybrid sterility-1 (Hst-1) genotype by crossing to PWB/Ph, aMus musculus-derived inbred strain. The limit of resolution of the cross was 0.27 cM. The map distances have been determined for the DNA loci in theT-H-2 interval and theHst-1 gene was mapped in close vicinity to theD17Rp17 locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号