共查询到20条相似文献,搜索用时 15 毫秒
1.
The murine vasorin (Vasn) gene, initially known as Slit-like 2, encodes a transmembrane protein that shares structural similarities with the eponymous Slit proteins. However, whether it also shares functional similarities with these large secreted proteins remains to be elucidated. Here, we report expression of Vasn during embryonic and fetal development of the mouse using whole-mount in situ hybridization (WISH) and histochemical detection of β-galactosidase expressed from a targeted Vasn(lacZ) knock-in allele. Comparison of whole-mount staining patterns of both approaches showed identical expression domains, confirming that Vasn promoter-driven β-galactosidase expression faithfully reflects endogenous Vasn expression. Vasn is highly expressed in vascular smooth muscle cells (hence the name), a finding consistent with a previous report on its human homolog VASN, whose extracellular domain was shown to function as a TGF-β trap (Ikeda et al., 2004). Most striking, however, is Vasn's prominent expression in the developing skeletal system, starting as early as the first mesenchymal condensations appear. Moreover, distinct expression domains outside the bones, e.g., in the developing kidneys and lungs, suggest further roles for this gene in the mouse. Recently, it was shown that mitochondria-localized Vasn protects cells from TNFα- and hypoxia-induced apoptosis, and partial deletion of the Vasn coding sequence leads to increased sensitivity of hepatocytes to TNFα-induced apoptosis (Choksi et al., 2011). By providing a first comprehensive analysis of the Vasn expression pattern during mouse embryonic development, our study will help to further elucidate its biological functions. 相似文献
3.
4.
5.
Takada T Iida K Sasaki H Taira M Kimura H 《The International journal of developmental biology》2005,49(7):891-894
ADP-ribosylation factor (ARF)-like protein 6 (ARL6) is a member of the ARF-like protein (ARL) subfamily of small GTPases (Moss, 1995; Chavrier, 1999). ARLs are highly conserved through evolution and most of them possess the consensus sequence required for GTP binding and hydrolysis (Pasquallato, 2002). Among ARLs, ARL6 which was initially isolated from a J2E erythroleukemic cell line is divergent in its consensus sequences and its expression has been shown to be limited to the brain and kidney in adult mouse (Ingley, 1999). Recently, it was reported that mutations of the ARL6 gene cause type 3 Bardet-Biedl syndrome in humans and that ARL6 is involved in ciliary transport in C. elegans (Chiang, 2004; Fan, 2004). Here, we investigated the expression pattern of ARL6 during early mouse development by whole-mount in situ hybridization and found that interestingly, ARL6 mRNA was localized around the node at 7.0-7.5 days post coitum (dpc) embryos, while weak expression was also found in the ectoderm. At the later stage (8.5 dpc) ARL6 was expressed in the neural plate and probably in the somites. Based on these results, a possible role of ARL6 in early development is discussed in relation to the findings in human and C. elegans (Chiang, 2004; Fan, 2004). 相似文献
6.
Iglesias BV Centeno G Pascuccelli H Ward F Peters MG Filmus J Puricelli L de Kier Joffé EB 《Histology and histopathology》2008,23(11):1333-1340
Glypicans represent a family of cell surface proteoglycans. Loss-of-function mutations in the human glypican-3 (GPC3) gene results in the Simpson-Golabi-Behmel syndrome, characterized by severe malformations and pre- and postnatal overgrowth. Because the expression of GPC3 during human embryonic and fetal periods remains largely unknown, we investigated by immunohistochemistry its pattern of expression during four periods of human development covering the embryonic period (P1) from 5 to 8 weeks of development, and the fetal periods (P2, P3 and P4) from 9 to 28 weeks of development. Hepatocytes were homogeneously positive for GPC3 during the four periods while pancreatic acini and ducts showed a rather high staining only during P1. GPC3 was also detected in several kidney structures and in the genital system where the sex cords were weakly positive in P1 and P2. In later developmental stages the male's genital system expressed GPC3 while the female's did not. While the mesenchyme in the limbs showed positive staining in P1, GPC3 was not detected during the following stages. The mesenchymal tissue localized between the most caudal vertebrae was also positive in P1. A strong GPC3 signal was observed in neurons of the spinal cord and dorsal root ganglia in P2 and P3, while the brain was negative. In sum our studies revealed that GPC3 expression is highly tissue- and stage-specific during human development. The expression pattern of GPC3 is consistent with the abnormalities seen in the Simpson-Golabi-Behmel syndrome. 相似文献
7.
8.
Heini Kallio Silvia Pastorekova Jaromir Pastorek Abdul Waheed William S Sly Susanna Mannisto Markku Heikinheimo Seppo Parkkila 《BMC developmental biology》2006,6(1):22
Background
Of the thirteen active carbonic anhydrase (CA) isozymes, CA IX and XII have been linked to carcinogenesis. It has been suggested that these membrane-bound CAs participate in cancer cell invasion, which is facilitated by an acidic tumor cell environment. Since active cell migration is a characteristic feature of embryonic development, we set out to explore whether these isozymes are expressed in mouse embryos of different ages. The studies were focused on organogenesis stage. 相似文献9.
10.
11.
Sabira Hachem Anne-Sophie Laurenson Jean-Philippe Hugnot Catherine Legraverend 《BMC developmental biology》2007,7(1):17
Background
In the cerebellum of newborn S100B-EGFP mice, we had previously noted the presence of a large population of S100B-expressing cells, which we assumed to be immature Bergmann glial cells. In the present study, we have drawn on this observation to establish the precise spatio-temporal pattern of S100B gene expression in the embryonic cerebellum. 相似文献12.
13.
14.
15.
CTGF expression during mouse embryonic development 总被引:6,自引:0,他引:6
Friedrichsen S Heuer H Christ S Winckler M Brauer D Bauer K Raivich G 《Cell and tissue research》2003,312(2):175-188
Connective tissue growth factor (CTGF) is a potent fibroblast mitogen and angiogenic factor which plays an important role in wound healing, cancerogenesis and fibrotic and vascular disease. Here we explored the regulation and the cellular site of the mRNA synthesis for this growth factor in the developing mouse embryo by in situ hybridisation. Strong and persistent CTGF gene expression was limited to three types of tissue: the vascular endothelium, particularly the high-pressure part of the cardiovascular system, condensed connective tissue around bone and cartilage, and maturing layer VII neurons in the cerebral cortex. With few exceptions (late tooth bud, neuroepithelium) epithelial tissue was negative. Very transient but strong expression was observed early during formation of cartilage, in late stages during perichondral ossification, on cerebral neuroepithelium, and in several discrete stages of tooth formation, on mesenchymal precursors of odontoblasts condensing on inner dental epithelium, and later on apposing regions of ameloblast and odontoblast epithelium. Altogether, the current study suggests that CTGF performs a dual role: a continuous function in the cardiovascular system, bone and cartilage-associated mesenchyme and maturing layer VII neurons, but also a more transient function associated with the formation of cartilage, bone, tooth and cerebral nerve cells. 相似文献
16.
《Biotechnic & histochemistry》2013,88(3):187-194
AbstractHedgehog (Hh) signaling plays many key roles in the development of Drosophila and vertebrate embryos including regulation of craniofacial development. The seven-transmembrane protein, smoothened (Smo) transduces the Hh signal across the plasma membrane as an essential receptor of PTCHED1/2. There are few studies that evaluate the detailed expression of Smo in mouse embryonic craniofacial development. We investigated the expression patterns of Smo during murine embryonic craniofacial development using in situ hybridization (ISH), studies of whole-mounts and sections, immunohistochemistry, quantitative real time PCR, and Western blot analysis. We found that Smo mRNA was expressed in the face of mouse embryos at 11 and 12.5 days post coitum (dpc). After 13.5 dpc, the expression decreased to a low level and was faintly detected after birth. Smo protein could be detected also in embryos at 11, 12.5, and 14.5 dpc. After 15.5 dpc, the expression was very faint and paralleled the gene expression studies. No expression was detected in whisker follicle during facial development and faint signal was detected in Meckel's cartilage. These findings concerning Smo expression should guide further investigation of sonic Hh signaling pathway gene function during maxillofacial development. 相似文献
17.
Khalfallah O Faucon-Biguet N Nardelli J Meloni R Mallet J 《Gene expression patterns : GEP》2008,8(3):148-154
The human zinc finger protein 191 (ZNF191) is a Krüppel-like protein and can specifically interact with the widespread TCAT motif which constitutes the HUMTH01 microsatellite in the tyrosine hydroxylase (TH) gene (encoding the rate-limiting enzyme in the synthesis of catecholamines). Allelic variations of HUMTH01 are known to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. This factor has been isolated from bone marrow and promyelocytic leukemia cell lines indicating that ZNF191 also plays a role in hematopoiesis. Thus, ZNF191 could participate in the regulation of several genes implicated in different functions. Moreover, mice that are deficient in Zfp191, the murine homologue of ZNF191, have been shown to be severely retarded in development and to die approximately at embryonic day 7.5. In order to gain further insight into its biological functions, we have analysed the localisation of Zfp191 throughout mouse development. Expression was detected early during embryogenesis in ectodermal, endodermal, mesodermal and extra-embryonic tissues. In particular, Zfp191 was observed in the developing central nervous system. Interestingly, its expression levels were prominent in areas of proliferation such as the subventricular zone. Zfp191 expression pattern during development can account for the phenotypic features of Zfp191(-/-) embryos. 相似文献
18.
Drapc1 expression during mouse embryonic development 总被引:2,自引:0,他引:2
We identified the mouse homolog of human DRAPC1 (APCDD1) gene, shown to be a target of Wnt/beta-catenin signaling pathway in cancer cell lines. Analysis of its spatiotemporal expression in mouse embryos from E7.5 to E14 showed that Drapc1 is expressed during development of the extraembryonic structures, nervous system, vascular system and inner ear. In addition, Drapc1 is expressed in the mesenchyme of several developing organs at sites of epithelio-mesenchymal interactions. Drapc1 expression was also found in the hair follicles of the adult mouse skin. Similarity of Drapc1 expression pattern to location of active beta-catenin in developing mouse embryo further suggests that mouse Drapc1 is a novel in vivo target gene of Wnt/beta-catenin signaling pathway. 相似文献
19.
20.
Qi Liu Hongjuan He Tiebo Zeng Zhijun Huang Tianbo Fan Qiong Wu 《Journal of molecular histology》2014,45(4):363-372
MicroRNAs are small noncoding RNAs involved in various biological processes. We characterized the expression of miR-344-3p during mouse embryonic development. At E9.5–E10.5 and E15.5, in situ hybridization detected strong miR-344-3p signal in the central nervous system, including the cerebral cortex, hindbrain, cerebellum, thalamus, hindbrain, medulla oblongata, spinal cord, and dorsal root ganglia. Further, qRT-PCR analysis identified miR-344-3p expression at E15.5, with expression stably maintained in the brain from E12.5 to E18.5 before decreasing to relatively low levels postnatally. We also analyzed miR-344-3p expression using immunofluorescence in situ hybridization at E18.5 and within the adult brain. miR-344-3p signal was mainly detected in cortical regions surrounding the ventricular system, choroid plexus, glomerular layer of the olfactory bulb, and granular cell layer of the cerebellar cortex. Altogether, our results indicate miR-344-3p may play an important role in morphogenesis, nervous system development in the brain. 相似文献