首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quantity of translatable mRNA of glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ 1-oxidoreductase, EC 1.1.1.49) in primary cultures of adult rat hepatocytes subjected to different hormonal conditions was determined with a reticulocyte-lysate, cell-free system. The level of glucose-6-phosphate dehydrogenase mRNA was about 5-fold higher in the presence of insulin than in its absence. This increase of glucose-6-phosphate dehydrogenase mRNA reached a maximum 12 h after the addition of insulin. The maximum level of induction of glucose-6-phosphate dehydrogenase mRNA required 10(-8) M insulin. Glucagon and triiodothyronine had no effect on the glucose-6-phosphate dehydrogenase mRNA level. The increase of glucose-6-phosphate dehydrogenase activity correlated with the increase in level of mRNA of this enzyme. This suggests that the changes in glucose-6-phosphate dehydrogenase activity in response to the above hormonal changes are primarily due to changes in the amount of mRNA coding for this enzyme.  相似文献   

2.
The yeast Saccharomyces cerevisiae cells had higher antioxidant enzyme activities under growth in ethanol than that in glucose as a carbon and energy source. The correlations between catalase activity and protein carbonyl level (r(2)=0.857), between catalase and glucose-6-phosphate dehydrogenase activities (r(2)=0.924) and between protein carbonyl levels and glucose-6-phosphate dehydrogenase activity (r(2)=0.988) under growth in ethanol were found. Growing in ethanol the strain deficient in cytosolic and peroxisomal catalases had 7.1-fold higher level of carbonyl proteins than that of wild-type strain. Our data suggest that in vivo catalases may protect glucose-6-phosphate dehydrogenase against oxidative inactivation.  相似文献   

3.
The functional coupling of 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase was investigated in rat liver microsomal vesicles. The activity of both enzymes was latent in intact vesicles, indicating the intraluminal localization of their active sites. Glucose-6-phosphate, a substrate for hexose-6-phosphate dehydrogenase, stimulated the cortisone reductase activity of 11beta-hydroxysteroid dehydrogenase type 1. Inhibition of glucose-6-phosphate uptake by S3483, a specific inhibitor of the microsomal glucose-6-phosphate transporter, decreased this effect. Similarly, cortisone increased the intravesicular accumulation of radioactivity upon the addition of radiolabeled glucose-6-phosphate, indicating the stimulation of hexose-6-phosphate dehydrogenase activity. A correlation was shown between glucose-6-phosphate-dependent cortisone reduction and cortisone-dependent glucose-6-phosphate oxidation. The results demonstrate a close cooperation of the enzymes based on co-localization and the mutual generation of cofactors for each other.  相似文献   

4.
The nutritional regulation of rat liver glucose-6-phosphate dehydrogenase was studied using a cloned DNA complementary to glucose-6-phosphate dehydrogenase mRNA. The recombinant cDNA clones were isolated from a double-stranded cDNA library constructed from poly(A+) RNA immunoenriched for glucose-6-phosphate dehydrogenase mRNA. Immunoenrichment was accomplished by adsorption of polysomes with antibodies directed against glucose-6-phosphate dehydrogenase in conjunction with protein A-Sepharose and oligo(dT)-cellulose chromatography. Poly(A+) RNA encoding glucose-6-phosphate dehydrogenase was enriched approximately 20,000-fold using these procedures. Double-stranded cDNA was synthesized from the immunoenriched poly(A+) RNA and inserted into pBR322 using poly(dC)-poly(dG) tailing. Escherichia coli MC1061 was transformed, and colonies were screened for glucose-6-phosphate dehydrogenase cDNA sequences by differential colony hybridization. Plasmid DNA was purified from clones which gave positive signals, and the identity of the glucose-6-phosphate dehydrogenase clones was verified by hybrid-selected translation. A collection of glucose-6-phosphate dehydrogenase cDNA plasmids with overlapping restriction maps was obtained. Northern blot analysis of rat liver poly(A+) RNA using nick-translated, 32P-labeled cDNA inserts revealed that the glucose-6-phosphate dehydrogenase mRNA is 2.3 kilobases in length. RNA blot analysis showed that refeeding fasted rats a high carbohydrate diet results in a 13-fold increase in the amount of hybridizable hepatic glucose-6-phosphate dehydrogenase mRNA which parallels the increase in enzyme activity. These results suggest that the nutritional regulation of hepatic glucose-6-phosphate dehydrogenase occurs at a pretranslational level.  相似文献   

5.
The activity of some enzymes of intermediary metabolism, including enzymes of glycolysis, the hexose monophosphate shunt, and polyol cryoprotectant synthesis, were measured in freeze-tolerant Eurosta solidaginis larvae over a winter season and upon entry into pupation. Flexible metabolic rearrangement was observed concurrently with acclimatization and development. Profiles of enzyme activities related to the metabolism of the cryoprotectant glycerol indicated that fall biosynthesis may occur from two possible pathways: 1. glyceraldehyde-phosphate glyceraldehyde glycerol, using glyceraldehyde phosphatase and NADPH-linked polyol dehydrogenase, or 2. dihydroxyacetonephosphate glycerol-3-phosphate glycerol, using glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase. Clearance of glycerol in the spring appeared to occur by a novel route through the action of polyol dehydrogenase and glyceraldehyde kinase. Profiles of enzyme activities associated with sorbitol metabolism suggested that this polyol cryoprotectant was synthesized from glucose-6-phosphate through the action of glucose-6-phosphatase and NADPH-linked polyol dehydrogenase. Removal of sorbitol in the spring appeared to occur through the action of sorbitol dehydrogenase and hexokinase. Glycogen phosphorylase activation ensured the required flow of carbon into the synthesis of both glycerol and sorbitol. Little change was seen in the activity of glycolytic or hexose monophosphate shunt enzymes over the winter. Increased activity of the -glycerophosphate shuttle in the spring, indicated by greatly increased glycerol-3-phosphate dehydrogenase activity, may be key to removal and oxidation of reducing equivalents generated from polyol cryoprotectan catabolism.Abbreviations 6PGDH 6-Phosphogluconate dehydrogenase - DHAP dihydroxy acetone phosphate - F6P fructose-6-phosphate - F6Pase fructose-6-phospha-tase - FBPase fructose-bisphosphatase - G3P glycerol-3-phosphate - G3Pase glycerol-3-phosphate phophatase - G3PDH glycerol-3-phosphate dehydrogenase - G6P glucose-6-phosphate - G6Pase glucose-6-phosphatase - G6PDH glucose-6-phosphate dehydrogenase - GAK glyceraldehyde kinase - GAP glyceraldehyde-3-phosphate - GAPase glyceraldehyde-3-phosphatase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glycerol dehydrogenase - GPase glycogen phosphorylase - HMS hexose monophosphate shunt - LDH lactate dehydrogenase - NADP-IDH NADP+-dependent isocitrate dehydrogenase - PDHald polyol dehydrogenase, glyceraldehyde activity - PDHgluc polyol dehydrogenase, glucose activity - PFK phosphofructokinase - PGI phosphoglucoisomerase - PGK phosphoglycerate kinase - PGM phosphoglucomutase - PK pyruvate kinase - PMSF phenylmethylsulfonylfluoride - SoDH sorbitol dehydrogenase - V max maximal enzyme activity - ww wet weight  相似文献   

6.
Glucose may be converted to 6-phosphogluconate by alternate pathways in Pseudomonas aeruginosa. Glucose is phosphorylated to glucose-6-phosphate, which is oxidized to 6-phosphogluconate during anaerobic growth when nitrate is used as respiratory electron acceptor. Mutant cells lacking glucose-6-phosphate dehydrogenase are unable to catabolize glucose under these conditions. The mutant cells utilize glucose as effectively as do wild-type cells in the presence of oxygen; under these conditions, glucose is utilized via direct oxidation to gluconate, which is converted to 6-phosphogluconate. The membrane-associated glucose dehydrogenase activity was not formed during anaerobic growth with glucose. Gluconate, the product of the enzyme, appeared to be the inducer of the gluconate transport system, gluconokinase, and membrane-associated gluconate dehydrogenase. 6-Phosphogluconate is probably the physiological inducer of glucokinase, glucose-6-phosphate dehydrogenase, and the dehydratase and aldolase of the Entner-Doudoroff pathway. Nitrate-linked respiration is required for the anaerobic uptake of glucose and gluconate by independently regulated transport systems in cells grown under denitrifying conditions.  相似文献   

7.
Glucose-6-phosphate dehydrogenase activity has been localized ultrastructurally in fixed tissues. Activity was found in particular in association with ribosomes of granular endoplasmatic reticulum. Biochemical studies indicated that glucose-6-phosphate dehydrogenase activity is also present in the cytoplasm and in peroxisomes. Fixation may be held responsible for selective inactivation of part of glucose-6-phosphate dehydrogenase activity. In the present study, we applied the ferricyanide method for the demonstration of glucose-6-phosphate dehydrogenase activity in unfixed cryostat sections of rat liver in combination with the semipermeable membrane technique and in isolated rat liver parenchymal cells. Isolated liver parenchymal cells were permeabilized with 0.025% glutaraldehyde after NADP+ protection of the active site of glucose-6-phosphate dehydrogenase. This treatment resulted in only slight inactivation of glucose-6-phosphate dehydrogenase activity. The composition of the incubation medium was optimized on the basis of rapid light microscopical analysis of the formation of reddish-brown final reaction product in sections. With the optimized method, electron dense reaction product was observed in cryostat sections on granular endoplasmic reticulum, in mitochondria and at the cell border. However, the ultrastructural morphology was rather poor. In contrast, the morphology of incubated isolated cells was preserved much better. Electron dense precipitate was found on ribosomes of the granular endoplasmic reticulum, in peroxisomes and the cytoplasm, particularly at the periphery of cells. In conclusion, our ultrastructural study clearly demonstrates that it is essential to use mildly-fixed cells to allow detection of glucose-6-phosphate dehydrogenase activity in all cellular compartments where activity is present.  相似文献   

8.
Summary In submerged cultures of Claviceps sp. CP II, elymoclavine was synthesized only by the growing mycelium (phase P1), whereas cultures of C. purpurea strain 129 produced agroclavine after vegetative growth had also ceased (phase P2). In strain CP II, the peak of activity of malate dehydrogenase, glucose-6-phosphate dehydrogenase and phosphatases was related to the time of maximum growth rate and alkaloid production. Citrate synthase activity paralleled the course of alkaloid synthesis. Strain 129 exhibited a further activity peak of the same magnitude during phase P2. ATP levels in both cultures corresponded to the pattern of change in enzyme activities. Strain CP II contained roughly twice as much orthophosphate and ATP in its cells as strain 129 and exhibited higher average activity of glucose-6-phosphate dehydrogenase. It follows from these results that alkaloid synthesis requires the processes of primary metabolism, even when it occurs after active growth of the culture has ceased. Cultures producing alkaloids oxidized at C-8 exhibit higher glucose-6-phosphate dehydrogenase activity, probably because of a higher NADPH consumption.  相似文献   

9.
Activities of glucose-6-phosphate dehydrogenase and 6-phospho-gluconate dehydrogenase as well electrophoretic mobility of glucose-6-phosphate dehydrogenase from erythrocytes of Brazilian monkeys were investigated. Glucose-6-phosphate dehydrogenase activity of simian was 4 times higher than the human values. Regarding electrophoretic studies, the results, did not reveal any intraspecific polymorphism. A comparison of erythrocyte glucose-6-phosphate dehydrogenases among primates is also presented.  相似文献   

10.
N6,O2′-Dibutyryl cyclic adenosine 3′,5′-monophosphate (DBcAMP) injected into rats bearing MTW9 mammary carcinoma resulted in an early disappearance of tumor microsomal glucose-6-phosphate dehydrogenase activity while mitochondrial and supernatant isozyme activities were not affected. Prolonged DBcAMP treatment of rats bearing 5123 hepatoma significantly decreased all glucose-6-phosphate dehydrogenase isozyme activities but did not alter host liver isozyme activities or liver regeneration. Since DBcAMP treatment arrested growth of these tumors, the loss of microsomal glucose-6-phosphate dehydrogenase may be an early event in the inhibition of tumor growth in vivo.  相似文献   

11.
Human erythrocyte glucose-6-phosphate dehydrogenase contains a reactive lysyl residue, which can be labelled with pyridoxal 5'-phosphate. The binding of one mole of pyridoxal 5'-phosphate per mole of enzyme subunit produces substantial inactivation. The substrate glucose-6-phosphate prevents the loss of activity, suggesting that the reaction site is close to the substrate-binding site. A tryptic peptide containing the pyridoxal-5'-phosphate-binding lysyl residue has been isolated and characterised. The reactive lysyl residue has been identified in the glucose-6-phosphate dehydrogenase amino acid sequence. Comparison with glucose-6-phosphate dehydrogenase from other sources shows a high homology with a peptide containing a reactive lysyl residue, isolated from the enzyme from Saccharomyces cerevisiae; glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides also contains a region highly homologous with the sequence around the reactive lysyl residue in the human enzyme. The results of this communication provide the first direct evidence for the association of an essential catalytic function with a specific region of the molecule of human erythrocyte glucose-6-phosphate dehydrogenase.  相似文献   

12.
甘蓝型油菜子油分的积累与某些生理变化关系的研究   总被引:14,自引:0,他引:14  
油菜种子发育过程中,其内部的生理代谢过程发生了规律性的变化。伴随着种子的发育进程,6-磷酸葡萄糖脱氢酶、异柠檬酸裂解酶、异柠檬酸脱氢酶和琥珀酸脱氢酶的活性均有不同程度的增强。在油分旺盛合成期,6-磷酸葡萄糖脱氢酶和异柠檬酸裂解酶的活性均达到了最大值,而此时,异柠檬酸脱氢酶和琥珀酸脱氢酶的活属于匀增加较慢;在种子的不同发育时期,高含油量品系的6-磷酸葡萄糖脱氢酶和异柠檬酸裂解酶的活性均高于低含油量的  相似文献   

13.
Acquisition of the dark heterotrophic growth capacity on glucose in Plectonema boryanum involves both adaptation and enrichment of a fast-growing genotype. The adaptation includes induction of functions involved in glucose incorporation and increase in glucose-6-phosphate dehydrogenase activity. Photosynthetic products are implicated in the control of both systems. Efficient energy conversion in the dark, as measured by cyanophage multiplication, correlates in time with the increase in potential for glucose incorporation while heterotrophic growth capacity correlates with the increase in glucose-6-phosphate dehydrogenase activity. The lower efficiency of heterotrophic growth compared to photoautotrophic growth is discussed in light of the conservation of the photosynthetic potency in the heterotrophic cells.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - G6P glucose-6-phosphate - NADP nicotinamide adenine dinucleotide phosphate - NTG N-methyl-N-nitro-N-nitrosoguanidine - RUDP ribulose-1,5-diphosphate - TCA trichloroacetic acid Dedicated to Prof. R. Y. Stanier on the occasion of his 60th birthday  相似文献   

14.
Hyperglycemia is associated with metabolic disturbances affecting cell redox potential, particularly the NADPH/NADP+ ratio and reduced glutathione levels. Under oxidative stress, the NADPH supply for reduced glutathione regeneration is dependent on glucose-6-phosphate dehydrogenase. We assessed the effect of different hyperglycemic conditions on enzymatic activities involved in glutathione regeneration (glucose-6-phosphate dehydrogenase and glutathione reductase), NADP(H) and reduced glutathione concentrations in order to analyze the relative role of these enzymes in the control of glutathione restoration. Male Sprague-Dawley rats with mild, moderate and severe hyperglycemia were obtained using different regimens of streptozotocin and nicotinamide. Fifteen days after treatment, rats were killed and enzymatic activities, NADP(H) and reduced glutathione were measured in liver and pancreas. Severe hyperglycemia was associated with decreased body weight, plasma insulin, glucose-6-phosphate dehydrogenase activity, NADPH/NADP+ ratio and glutathione levels in the liver and pancreas, and enhanced NADP+ and glutathione reductase activity in the liver. Moderate hyperglycemia caused similar changes, although body weight and liver NADP+ concentration were not affected and pancreatic glutathione reductase activity decreased. Mild hyperglycemia was associated with a reduction in pancreatic glucose-6-phosphate dehydrogenase activity. Glucose-6-phosphate dehydrogenase, NADPH/NADP+ ratio and glutathione level, vary inversely in relation to blood glucose concentrations, whereas liver glutathione reductase was enhanced during severe hyperglycemia. We conclude that glucose-6-phosphate dehydrogenase and NADPH/NADP+ were highly sensitive to low levels of hyperglycemia. NADPH/NADP+ is regulated by glucose-6-phosphate dehydrogenase in the liver and pancreas, whereas levels of reduced glutathione are mainly dependent on the NADPH supply.  相似文献   

15.
The effect of estrogen on synthesis of glucose-6-phosphate dehydrogenase (D-Glucose-6-phosphate:NADP+ 1-oxidoreductase, EC 1.1.1.49) in the R3230AC mammary adenocarcinoma of ovariectomized Fischer rats was investigated. Enzyme synthesis was estimated by techniques using immunochemica precipitation and isolation of enzyme protein from tissues of rats that had been given radioactive leucine prior to sacrifice. The antibody-enzyme complex was dissociated and glucose-6-phosphate dehydrogenase was isolated after electrophoresis on sodium dodecyl sulfate-acrylamide gels. Administration of estradiol-17beta produced a two-fold increase in glucose-6-phosphate dehydrogenase activity, which was preceded by a five-fold increase in specific synthesis of glucose-6-phosphate dehydrogenase in R3230AC tumors. At least a 15-fold increase in enzyme synthesis was observed in the uterus. The rate of enzyme degradation (t 1/2) in the tumor was estimated at 17 h. These data indicate that the estrogen-induced increase in glucose-6-phosphate dehydrogenase activity was due to a de novo increase in enzyme synthesis.  相似文献   

16.
Decreased glucose-6-phosphate dehydrogenase activity has been shown in the red cells of workers employed in the works producing ferro-manganese alloys in comparison with that in the control group. Tobacco smoking and duration of the occupation did not affect the activity of glucose-6-phosphate dehydrogenase in red cells.  相似文献   

17.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

18.
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase   总被引:3,自引:0,他引:3  
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The development of histochemical methods preventing loss or redistribution of the enzyme by using either polyvinyl alcohol as a stabilizer or a semipermeable membrane interposed between tissue section and incubation medium, has lead to progress in the topochemical localization of glucose-6-phosphate dehydrogenase. Optimization of incubation conditions has further increased the precision of histochemical methods. Precise cytochemical methods have been developed either by the use of a polyacrylamide carrier in which individual cells have been incorporated before staining or by including polyvinyl alcohol in the incubation medium. In the present text, these methods for the histochemical and cytochemical localization of glucose-6-phosphate dehydrogenase for light microscopical and electron microscopical purposes are extensively discussed along with immunocytochemical techniques. Moreover, the validity of the staining methods is considered both for the localization of glucose-6-phosphate dehydrogenase activity in cells and tissues and for cytophotometric analysis. Finally, many applications of the methods are reviewed in the fields of functional heterogeneity of tissues, early diagnosis of carcinoma, effects of xenobiotics on cellular metabolism, diagnosis of inherited glucose-6-phosphate dehydrogenase deficiency, analysis of steroid-production in reproductive organs, and quality control of oocytes of mammals. It is concluded that the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase is of highly significant value in the study of diseased tissues. In many cases, the first pathological change is an increase in glucose-6-phosphate dehydrogenase activity and detection of these early changes in a few cells by histochemical means only, enables prediction of other subsequent abnormal metabolic events. Analysis of glucose-6-phosphate dehydrogenase deficiency in erythrocytes has been improved as well by the development of cytochemical tools. Heterozygous deficiency can now be detected in a reliable way. Cell biological studies of development or maturation of various tissues or cells have profited from the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
NAD-linked activity of glucose-6-phosphate dehydrogenase from both low-producing and high-producing strains of Streptomyces aureofaciens was inhibited by ATP, ADP, AMP and Pi. The inhibition constants indicate that ADP was the most potent inhibitor. The NADP-linked activity remained unaffected even at relatively high concentrations of these inhibitors. All inhibitions of the NAD-linked activity were competitive with respect to NAD and noncompetitive with respect to glucose-6-phosphate. The results represent a possible new regulatory mechanism of glucose-6-phosphate dehydrogenase from a streptomycete and emphasize its involvement in the regulation of the biosynthesis of tetracyclines.  相似文献   

20.
We treated leaves of winter wheat (Triticum aestivum L.) with cold, paraquat, or 3-amino-1,2,4-triazole and compared the responses. We assayed the activities of glucose-6-phosphate dehydrogenase, catalase, dehydroascorbate reductase and ascorbate free radical reductase and levels of hydrogen peroxide, glucose-6-phosphate, fructose-6-phosphate, ascorbate, dehydroascorbate, reduced and oxidized glutathione. With any of the three treatments, contents of cellular peroxides and hexose phosphates were raised. The content of ascorbate was lowered markedly by paraquat treatment, which produces active oxygen species, whereas such a decrease did not occur in other two treatments. When the plants were treated with 3-amino-1,2,4-triazole, which is a specific inhibitor of catalase, the content of oxidized glutathione increased severalfold. The glucose-6-phosphate dehydrogenase activity increased with all three treatments, but it decreased after glyphosate treatment, which does not stimulate the formation of peroxides. The activities of catalase and dehydroascorbate reductase were increased by the treatment of cold and paraquat, while 3-amino-1,2,4-triazole did not affect the dehydroascorbate reductase activity. The activity of ascorbate free radical reductase increased after treatment by paraquat only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号