首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of LDL is thought to be involved in both initiating and sustaining atherogenesis through the formation of proinflammatory lipids and the covalent modification of LDL particles. Platelet-activating factor (PAF; 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a potent phospholipid mediator involved in inflammation. Upon oxidation of LDL, oxidized phospholipids with PAF-like structure are generated, and some of them may act via the PAF receptor. We evaluated the contribution of 1-0-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16:0 PAF) and of other PAF analogs on the PAF-like bioactivity formed upon Cu2+-initiated oxidation of LDL. Reverse-phase HPLC purification and electrospray ionization-MS analyses showed that upon oxidation of LDL with inactivated PAF-acetylhydrolase (PAF-AH), C16:0 PAF accounted for >30% of PAF-like biological activity and its sn-2 butenoyl analog accounted for >50%. However, upon LDL oxidation in the presence of exogenous 1-0-alkyl-sn-glycero-3-phosphocholine (lyso-PAF) without PAF-AH inactivation, C16:0 PAF formation accounted for >90% of the biological activity recovered. We suggest that the C16:0 PAF, despite being a minor constituent of the LDL peroxidation products, may contribute substantially to the bioactivity formed in oxidized LDL. The higher bioactivity of C16:0 PAF, and the higher selectivity of the LDL-attached lyso-PAF transacetylase toward very short acyl chains [acetate (C2) vs. butanate (C4)], may explain the contribution described above.  相似文献   

2.
Red wine and its components have been shown to possess cardioprotective and anti-atherogenic effects. Additionally, red wine and many of its components like catechin, epicatechin, rutin, transresveratrol and quercetin possess antioxidant properties. Oxidized low density lipoprotein (LDL) is involved in the development of an atherosclerotic lesion. Red wine, therefore, may be anti-atherogenic because of its antioxidant effects on LDL modification. This study examined the antioxidant effects of catechin, epicatechin, rutin, transresveratrol, quercetin and Merlot wines on LDL oxidation. Merlot was chosen because although other red wines have been tested, limited information exists for this variety. Oxidation was carried out with AAPH (2,2-Azo-bis(2-amidinopropane) dihydrochloride) and AMVN (2,2-Azo-bis(2,4-dimethylvaleronitrile)), as water and lipid soluble peroxyl radical generating systems (FRGS), respectively. This allowed us to determine the lipophilic antioxidant characteristics of the wine and its components. Conjugated diene assays were used to measure LDL oxidation over 6 hrs. In an AAPH system, all polyphenolic compounds except transresveratrol displayed an antioxidant effect. LDL oxidation by AAPH was also inhibited by aliquots of Merlot wine. No antioxidant effects were observed in an AMVN environment except for a mild antioxidant effect by quercetin. Surprisingly, incubation of LDL with Merlot wine strongly protected against oxidation by AMVN. In summary, the five phenolic compounds displayed antioxidant effects in a water soluble free radical generating system, but only quercetin showed this in a lipid soluble one. However, red wine inhibited LDL oxidation by both water and lipid soluble free radical generating systems. Our data suggest, therefore, that red wines contain unidentified antioxidants that provide protection against LDL oxidation within a lipid soluble environment. (Mol Cell Biochem 263: 211–215, 2004)  相似文献   

3.
Lipid oxidation in LDL may play a role in atherogenesis. It has been shown that sulfite - a compound in the aqueous fraction of wine - could inhibit free radical (AAPH) mediated oxidation of plasma. Thus, sulfite has been proposed as an antioxidant. In contrast, the aqueous phase of wine has recently been shown to contain not fully identified compounds promoting transition metal ion (Cu(2+)) initiated LDL oxidation. As transition metal ions can catalyse the auto-oxidation of sulfite, we studied the influence of sulfite on Cu(2+) initiated LDL oxidation. The results show that sulfite at concentrations found in vivo strongly facilitated LDL oxidation by Cu(2+). The LDL-oxidase activity of ceruloplasmin was also stimulated by sulfite. ROS formation by Cu(2+)/SO(3)(2-) was not inhibited by SOD but by catalase. We propose that formation of Cu(+), sulfite radicals (SO(3)*(-)) and hydroxyl radicals (OH(*)) is a mechanism by which sulfite could act as a pro-atherogenic agent in presence of transition metal ions.  相似文献   

4.
Oxidized low density lipoprotein (LDL) has an important proinflammatory role in atherogenesis. In this study, we investigated the ability of oxidized LDL (oxLDL) and its phospholipid components to induce lipid body formation in leukocytes. Incubation of mouse peritoneal macrophages with oxidized, but not with native LDL led to lipid body formation within 1 h. This was blocked by platelet-activating factor (PAF) receptor antagonists or by preincubation of oxLDL with rPAF acetylhydrolase. HPLC fractions of phospholipids purified from oxLDL induced calcium flux in neutrophils as well as lipid body formation in macrophages. Injection of the bioactive phospholipid fractions or butanoyl and butenoyl PAF, a phospholipid previously shown to be present in oxLDL, into the pleural cavity of mice induced lipid body formation in leukocytes recovered after 3 h. The 5-lipoxygenase and cyclooxygenase-2 colocalized within lipid bodies formed after stimulation with oxLDL, bioactive phospholipid fractions, or butanoyl and butenoyl PAF. Lipid body formation was inhibited by 5-lipoxygenase antagonists, but not by cyclooxygenase-2 inhibitors. Azelaoyl-phosphatidylcholine, a peroxisome proliferator-activated receptor-gamma agonist in oxLDL phospholipid fractions, induced formation of lipid bodies at late time points (6 h) and synergized with suboptimal concentrations of oxLDL. We conclude that lipid body formation is an important proinflammatory effect of oxLDL and that PAF-like phospholipids and peroxisome proliferator-activated receptor-gamma agonists generated during LDL oxidation are important mediators in this phenomenon.  相似文献   

5.
The oxidative theory suggests that LDL oxidation contributes to atherogenesis, implying that attenuation of this process by antioxidants should decrease atherosclerosis. However, a causative link between LDL oxidation and atherogenesis is not firmly established. It requires the identification of the oxidants that are responsible for the initiation of LDL oxidation, and an understanding of the modified moieties that are responsible for the proatherogenic activities of oxidized LDL. The present review summarizes recent data on potential biological oxidants for LDL in the vessel wall, and discusses the antiatherogenic role(s) of selected antioxidants.  相似文献   

6.
Oxidized low-density lipoproteins (ox-LDLs) appear to play a significant role in atherogenesis. In fact, circulating ox-LDL concentrations have been recognized as a risk factor for cardiovascular disease (CVD). A higher intake of some nutrients and specific food compounds such as monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs) and flavonoids have also been associated with a lower risk of CVD. These dietary factors could be associated to a lower risk of CVD through a reduction of the atherogenicity of LDL particles through limited oxidation. Therefore, the purpose of this article is to review human clinical studies that evaluated effects of dietary antioxidant vitamins, fatty acids (MUFA, PUFA) and specific flavonoid-rich foods on LDL particle oxidation and describe potential mechanisms by which dietary factors may prevent oxidation of LDL particles. Antioxidant vitamin supplements such as alpha-tocopherol and ascorbic acid as well as beta-carotene and fish-oil supplements have not been clearly demonstrated to prevent oxidation of LDL particles. Moreover, inconsistent documented effects of flavonoid-rich food such as olive oil, tea, red wine and soy on LDL particle oxidizability may be explained by difference in variety and quantity of flavonoid compounds used among studies. However, a healthy food pattern such as the Mediterranean diet, which includes a combination of antioxidant compounds and flavonoid-rich foods, appears effective to decrease LDL particle oxidizability, which may give some insight of the cardiovascular benefits associated with the Mediterranean diet.  相似文献   

7.
Low-density lipoprotein (LDL) oxidation may play a significant role in atherogenesis. Flavonoids are well-known for their excellent antioxidative capacity in various model systems, therefore we examined the behaviour of rutin, a quercetin-3-rutinosid, in the copper-mediated LDL oxidation. Rutin alone has been shown to protect LDL against oxidation. Furthermore we investigated the combination of rutin with a hydrophilic (ascorbate) and a lipophilic antioxidant (gamma-terpinene) in copper-mediated LDL oxidation. In both cases we found a synergistic effect on lag phase prolongation. To elucidate whether this effect mainly depends on the copper chelating ability of rutin we examined its reaction in more detail. Although inhibiting the oxidation of alpha-linolenic acid in the "rose bengal system" no direct influence of a copper-rutin-complex was determined. We conclude that a redox active copper-rutin-complex is still able to initiate the LDL oxidation but may prevent copper from a reaction at the binding sites of apoB-100. The synergistic effect in preventing LDL oxidation is due to this trapping of copper in a complex in the case of ascorbate. The synergistic action of rutin and gamma-terpinene can be explained by different distribution of rutin and gamma-terpinene in, and around the LDL-particle, respectively.  相似文献   

8.
There is accumulating evidence that LDL oxidation is essential for atherogenesis and antioxidants that prevent oxidation may either decelerate or reduce atherogenesis. Current study focused on the effect and mechanism of 3′,4′-dihydroxy-5,6,7,8-tetramethoxyflavone (DTF), a major metabolite of nobiletin (NOB, a citrus polymethoxylated flavone) on atherogenesis. We found DTF had stronger inhibitory activity than α-tocopherol on inhibiting Cu2+-mediated LDL oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene formation and electrophoretic mobility. Monocyte-to-macrophage differentiation plays a vital role in early atherogenesis. DTF (10–20 μM) dose-dependently attenuated differentiation along with the reduced gene expression of scavenger receptors, CD36 and SR-A, in both PMA- and oxidized low-density lipoprotein (oxLDL)-stimulated THP-1 monocytes. Furthermore, DTF treatment of monocytes and macrophages led to reduction of fluorescent DiI-acLDL and DiI-oxLDL uptake. In conclusion, at least three mechanisms are at work in parallel: DTF reduces LDL oxidation, attenuates monocyte differentiation into macrophage and blunts uptake of modified LDL by macrophage. The effect is different from that of NOB, from which DTF is derived. This study thus significantly enhanced our understanding on how DTF may be beneficial against atherogenesis.  相似文献   

9.
The oxidative modification hypothesis of atherogenesis: an overview   总被引:24,自引:0,他引:24  
The literature relating lipid and lipoprotein oxidation to atherosclerosis has expanded enormously in recent years. Papers on the “oxidative modification hypothesis” of atherogenesis have ranged from the most basic studies of the chemistry and enzymology of LDL oxidation, through studies of the biological effects of oxidized LDL on cultured cells, and on to in vivo studies of the effects of antioxidants on atherosclerosis in animals and humans. The data in support of this theory are mounting but many key questions remain unanswered. For example, while it is generally agreed that LDL undergoes oxidation and that oxidized LDL is present in arterial lesions, it is still not known how and where LDL gets oxidized in vivo nor which of its many biological effects demonstrable in vitro are relevant to atherogenesis in vivo. This brief review is not intended to be comprehensive but rather to offer a perspective and a context for this Forum. We discuss the strengths and weaknesses of each line of evidence, try to identify areas in which further research is needed, assess the relevance of the hypothesis to the human disease, and point to some of the potential targets for therapy.  相似文献   

10.
PURPOSE OF REVIEW: To highlight the potential importance of glycation as an atherogenic modification of LDL in both diabetic and nondiabetic people. RECENT FINDINGS: Small dense LDL which is known to be most closely associated with atherogenesis is more susceptible to glycation than more buoyant LDL. Glycation and oxidation of LDL appear to be intimately associated. SUMMARY: Glycation of LDL occurs chiefly due to the nonenzymatic reaction of glucose and its metabolites with the free amino groups of lysine in which LDL is rich. Higher concentrations of glycated LDL are present in diabetic than in nondiabetic individuals, but even in the latter, there is generally more circulating glycated LDL than oxidatively modified LDL. Probably, oxidation and glycation of LDL are at least partially interdependent, but both prevent LDL receptor-mediated uptake and promote macrophage scavenger receptor uptake. The recognition that LDL glycation is at least as important as oxidation in atherogenesis may lead to improvements in our understanding of its mechanism and how to prevent it.  相似文献   

11.
Oxidized low density lipoprotein (LDL) plays an important role in atherogenesis. It is generally thought that LDL is mainly oxidized in the intima of vessel walls, surrounded by hydrophilic antioxidants and proteins such as albumin. The aim of this study was to investigate the possible interrelationships between oxidation resistance of LDL and its protein and lipid moieties. Proteins and to a lesser extent lipids, appeared to be the major determinants in the LDL Cu2+-oxidation resistance, which in turn depend on the ultracentrifugation (UC) procedure used. Comparing high speed/short time (HS/ST, 4 h), high speed/long time (HS/LT, 6-16h) and low speed/long time (LS/LT, 24h) conditions of UC, HS with the shortest time (4h) led to prepare LDL (named LDL.HS-4 h) with higher total protein and triglyceride contents, unchanged total cholesterol, phospholipids and Vitamin E, and higher Cu2+-oxidation resistance. Among proteins, only albumin allows to explain changes. PAF acetyl hydrolase appeared to be unaffected, whereas its pro-oxidant role was established and found only in the absence of albumin. In contrast the pro-oxidant role of caeruloplasmin took place regardless of the albumin content of LDL. The antioxidant effect of albumin (the oxidation lag time was doubled for 20mol/mol albumin per LDL) is assumed to be due to its capacity at decreasing LDL affinity for Cu2+. Interestingly, the LDL.HS-4 h albumin content mirrored the intrinsic characteristics of LDL in the plasma and was not affected by added free albumin. Moreover, it has been verified that in 121 healthy subjects albumin was the best resistance predictor of the Cu2+-oxidation of LDL.HS-4 h, with a multiple regression equation: lag time (min) = 62.1 + 0.67(HSA/apoB) + 0.02(TG/apoB)-0.01(TC/apoB); r = 0.54, P < 0.0001. Accounted for by lag time, the oxidation resistance did not correlate with alpha-tocopherol and ubiquinol contents of LDL. The mean albumin content was about 10mol/mol, and highly variable (0-58 mol/mol) with subjects. The LDL.HS-4h may account for the status of LDL in its natural environment more adequately than LDL resulting from other conditions of UC.  相似文献   

12.
Oxidation of human low density lipoprotein (LDL) generates proinflammatory mediators and underlies early events in atherogenesis. We identified mediators in oxidized LDL that induced an inflammatory reaction in vivo, and activated polymorphonuclear leukocytes and cells ectopically expressing human platelet-activating factor (PAF) receptors. Oxidation of a synthetic phosphatidylcholine showed that an sn-1 ether bond confers an 800-fold increase in potency. This suggests that rare ether-linked phospholipids in LDL are the likely source of PAF-like activity in oxidized LDL. Accordingly, treatment of oxidized LDL with phospholipase A(1) greatly reduced phospholipid mass, but did not decrease its PAF-like activity. Tandem mass spectrometry identified traces of PAF, and more abundant levels of 1-O-hexadecyl-2-(butanoyl or butenoyl)-sn-glycero-3-phosphocholines (C(4)-PAF analogs) in oxidized LDL that comigrated with PAF-like activity. Synthesis showed that either C(4)-PAF was just 10-fold less potent than PAF as a PAF receptor ligand and agonist. Quantitation by gas chromatography-mass spectrometry of pentafluorobenzoyl derivatives shows the C(4)-PAF analogs were 100-fold more abundant in oxidized LDL than PAF. Oxidation of synthetic alkyl arachidonoyl phosphatidylcholine generated these C(4)-PAFs in abundance. These results show that quite minor constituents of the LDL phosphatidylcholine pool are the exclusive precursors for PAF-like bioactivity in oxidized LDL.  相似文献   

13.
Intracellular generation of MDA-LYS epitope in foam cells.   总被引:6,自引:0,他引:6  
Oxidative stress plays a central role in atherogenesis. Antioxidants, such as probucol, inhibit oxidation of LDL, retard secretion of interleukin-1, growth factors and chemoattractants, and thus inhibit progression of atherosclerosis. Other antioxidants with an ability to inhibit LDL oxidation, however, could not prevent progression of atherosclerosis. The inconsistency between antioxidant potencies indicated oxidative events might have occurred at locations other than LDL. MDA-lysine epitope (MDA-lys) is closely associated with atherogenesis and was recognized as marker for oxidation. We traced formation of MDA-lys during oxidation of LDL and formation of foam cells. The results indicated that thiobarbituric acid reactive substance (TBARS) was primarily present in lipid fraction of ox-LDL not associated with protein fraction after Cu2+ oxidation in vitro. Oxidized LDL did not increase significant immunoreactivity of MDA-lys epitope under our experimental conditions. Foam cells, however, showed the presence of MDA-lys epitope suggesting that intracellular oxidation events occurred to internalized lipids. The uptake of non-oxidatively modified LDL (acetylated LDL) was sufficient to generate MDA-lys epitope in foam cells, consistent with the hypothesis that atherosclerosis is associated with oxidative events in addition to LDL oxidation. We hypothesized that MDA-lys may be generated through intracellular lipid metabolism during the formation of foam cells.  相似文献   

14.
Oxidation of low density lipoprotein (LDL) causes changes in the biological properties of LDL that may be important in atherogenesis. That LDL oxidation is accompanied by lipid peroxidation has been demonstrated, but previous analyses of the products of LDL oxidation have not included measurement of specific lipid hydroperoxy and hydroxy derivatives. In this study, LDL was isolated from plasma of normal volunteers and exposed to oxygenated buffer and 5 microM CuSO4 for 24 h. Oxidized LDL showed decreased linoleate (18:2) and arachidonate (20:4) content with increased concentrations of thiobarbituric acid reactive substances (TBARS) and hydroxy and hydroperoxy 18:2 and 20:4. The electrophoretic mobility of the LDL protein also was increased by oxidation. After reduction, the hydroxy fatty acids were characterized by gas chromatography-mass spectrometric analysis of the trimethylsilyl ether methyl ester derivatives. The hydroperoxy and hydroxy derivatives accounted for approximately 70% of the linoleate consumed during LDL oxidation and represented 45-fold more product than was measured by TBARS analysis. Numerous biological properties, including cytotoxic and chemoattractant activities of hydroperoxy and hydroxy fatty acids, have been reported, but the manner in which they may contribute to atherogenesis requires further study.  相似文献   

15.
For more than two decades, there has been continuing evidence of lipid oxidation playing a central role in atherogenesis. The oxidation hypothesis of atherogenesis has evolved to focus on specific proinflammatory oxidized phospholipids that result from the oxidation of LDL phospholipids containing arachidonic acid and that are recognized by the innate immune system in animals and humans. These oxidized phospholipids are largely generated by potent oxidants produced by the lipoxygenase and myeloperoxidase pathways. The failure of antioxidant vitamins to influence clinical outcomes may have many explanations, including the inability of vitamin E to prevent the formation of these oxidized phospholipids and other lipid oxidation products of the myeloperoxidase pathway. Preliminary data suggest that the oxidation hypothesis of atherogenesis and the reverse cholesterol transport hypothesis of atherogenesis may have a common biological basis. The levels of specific oxidized lipids in plasma and lipoproteins, the levels of antibodies to these lipids, and the inflammatory/anti-inflammatory properties of HDL may be useful markers of susceptibility to atherogenesis. Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides may both promote a reduction in oxidized lipids and enhance reverse cholesterol transport and therefore may have therapeutic potential.  相似文献   

16.
17.
Endothelial Chlamydia pneumoniae infection promotes oxidation of LDL   总被引:4,自引:0,他引:4  
The bacterium Chlamydia pneumoniae chronically infects atheromatous lesions and is linked to atherosclerosis by modifying inflammation, proliferation, and the lipid metabolism of blood monocytes. As continuous LDL modification in the vascular intima is crucial for atherogenesis we investigated the impact of endothelial infection on LDL oxidation. HUVEC were infected with a vascular C. pneumoniae strain. Supernatants of infected cells but not cell lysates increased lipid peroxidation products (6.44 vs 6.14 nmol/ml, p<0.05) as determined by thiobarbituric acid reacting substances assay. Moreover, supernatants rendered human LDL more susceptible to oxidation as shown in a copper-ion catalysed LDL oxidation assay by a 16% reduction of LDL resistance against pro-oxidative stimuli (p<0.05). Chlamydial infection of vascular endothelial cells releases acellular components that convert LDL to its proatherogenic form and reduce its resistance against oxidation. Foci of chronic endothelial chlamydial infection may thus continuously contribute to the dysregulated lipid metabolism that promotes atherogenesis.  相似文献   

18.
Platelet-activating factor (PAF) is a glycerophospholipid that has diverse potent biological actions. A plasma enzyme catalyzes the hydrolysis of the sn-2 acetoyl group of PAF and thereby abolishes its bioactivity. This PAF acetylhydrolase is specific for phospholipids, such as PAF, with a short acyl group at the sn-2 position. The majority of it (60-70%) is associated with low density lipoprotein (LDL), and the remainder is with high density lipoprotein (HDL). LDL also has a phospholipase A2 activity that is specific for oxidized polyunsaturated fatty acids, which may be important in determining how LDL is recognized by cellular receptors. We previously have purified and characterized the PAF acetylhydrolase from human plasma. We now have found that the purified PAF acetylhydrolase catalyzes the hydrolysis of the oxidized fragments of arachidonic acid from the sn-2 position of phosphatidylcholine. One of the preferred substrates appeared by mass spectrometry to have 5-oxovalerate at the sn-2 position. We synthesized 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine and found that the PAF acetylhydrolase had the same apparent Km for it (11.3 microM) as for PAF (12.5 microM), with Vmax values of 100 and 167 mumol/h/mg of protein, respectively. We also conclude that the PAF acetylhydrolase is the sole activity in LDL that degrades oxidized phospholipids since we found co-localization of the activity against both substrates to LDL and HDL, and precipitation of enzyme activity with an antibody to the PAF acetylhydrolase. Thus, the PAF acetylhydrolase in human plasma degrades oxidized phospholipids, which may be involved in the modification of apolipoprotein B100 and other pathological processes.  相似文献   

19.
Lipoxygenase-dependent low-density lipoprotein (LDL) oxidation is believed to be involved in atherogenesis. Inhibition of lipoxygenase-induced lipid peroxidation might, therefore, be an important mode to suppress the development of atherosclerosis. Because dietary antioxidants inhibit LDL oxidation in vitro and their intake is inversely associated with coronary heart diseases, we compared the inhibitory effect of three typical flavonoids-quercetin, epicatechin, and flavone-with alpha-tocopherol and ascorbic acid against human LDL oxidation catalyzed by mammalian 15-lipoxygenase. The oxidative modification of LDL was monitored by measurement of cholesteryl ester hydroperoxide (CE-OOH) formation and consumption of antioxidants by using HLPC. Quercetin and epicatechin were the strongest inhibitors of LDL oxidation catalyzed by 15-lipoxygenase; ascorbic acid was an effective inhibitor in the first 3 h of oxidation; and fivefold alpha-tocopherol-enriched LDL showed a partial inhibition of CE-OOH formation only after 4-6 h of incubation. Flavone had no effect. Quercetin, ascorbic acid, and alpha-tocopherol were consumed in the first 3 h of incubation. Consumption of LDL alpha-tocopherol was partially inhibited by ascorbic acid and quercetin, whereas epicatechin and flavone were without effect. These results emphasize the inhibitory effect of the flavonoids quercetin and epicatechin on 15-lipoxygenase-mediated LDL lipid peroxidation. At similar concentrations, they are stronger antioxidants than ascorbic acid, alpha-tocopherol, and flavone.  相似文献   

20.
《Life sciences》1995,57(3):PL51-PL56
Oxidative modification of low density lipoprotein (LDL) has been suggested to be a risk factor for the development of atherosclerosis. Agents which can protect LDL from oxidation may be useful in preventing atherogenesis. Here, we found that morin hydrate, at 100 μM concentration, effectively inhibits Cu2+- induced oxidation of LDL. The oxidation of LDL was assessed by agarose gel electrophoresis. This was further studied by measuring the increased values of the malondialdehyde equivalents and the decreased numbers of reactive amino groups on oxidized LDL. Trolox, at equimolar concentrations, exhibit similar effects in preventing oxidation of LDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号