首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Administration of allylisopropylacetamide to rats caused a marked decline in the concentrations of reduced and oxidized glutathione in the liver. However, this decrease occurred in the presence of uninhibited activities of gamma-glutamylcysteine synthase and glutathione reductase, and unaltered activities of glutathione transferases A, B and C. The administration of cysteine, the rate-limiting precursor of glutathione formation, to rats treated with allylisopropylacetamide potentiated the inductive effects of the agent on 5-aminolaevulinate synthase, and markedly decreased the extent of decrease in glutathione concentrations by the agent. Conversely, the administration of diethyl maleate, which depletes the hepatic glutathione concentrations, to allylisopropylacetamide-pretreated rats (1h) diminished the extent of 5-aminolaevulinate synthase induction and the production of porphyrins by nearly 50%, when measured at 16h. This treatment did not alter the extent of non-enzymic degradation of liver haem by allylisopropylacetamide. When diethyl maleate was administered to the animals possessing high 5-aminolaevulinate synthase activity (at 3, 7 and 15h after allylisopropylacetamide), in 1h the enzyme activity was markedly decreased. Diethyl maleate had no effect on induction of 5-aminolaevulinate synthase by 3,5-diethoxycarbonyl-1,4-dihydrocollidine, also a potent porphyrinogenic agent. Diethyl maleate alone neither inhibited 5-aminolaevulinate synthase activity nor decreased the cellular content of porphyrins and haem. The data suggest that the decreases observed in the glutathione concentrations after allylisopropylacetamide administration are not the result of decreased production of the tripeptide. Rather, they most likely reflect the increased utilization of glutathione. The findings further suggest that the inhibition by diethyl maleate of allylisopropylacetamide-stimulated 5-aminolaevulinate synthase involves the inhibition of induction processes.  相似文献   

2.
The induction of 5-aminolaevulinate synthase and of cytochrome P-450 by short-chain aliphatic alcohols was compared in primary cultures of chicken-embryo hepatocytes. Isopropyl alcohol, isobutanol, pentan-1-ol and isopentanol alone caused up to a 4-fold increase in 5-aminolaevulinate synthase, whereas ethanol and propan-1-ol did not. Induction of the synthase by isopentanol was maximal at 8 h, and reached a plateau thereafter, whereas the activity induced by 2-propyl-2-isopropylacetamide continued to increase for 20 h. In the presence of 3,4,3',4'-tetrachlorobiphenyl, an inhibitor of haem synthesis at the uroporphyrinogen decarboxylase step, synergistic induction of 5-aminolaevulinate synthase was observed with all the alcohols except ethanol. Ethanol, but not isopentanol, decreased the extent of induction of 5-aminolaevulinate synthase by 2-propyl-2-isopropylacetamide and 3,4,3',4'-tetrachlorobiphenyl (50% decrease at 112 mM-ethanol). Total protein synthesis was not inhibited by ethanol in these cells. The composition of porphyrins was determined after treatment of cells with ethanol, isopentanol or 2-propyl-2-isopropylacetamide. Untreated cells, when incubated with 5-aminolaevulinate for 6 h, accumulated mainly protoporphyrin. However, when cells were pretreated with ethanol, isopentanol or 2-propyl-2-isopropylacetamide for 20 h, and 5-aminolaevulinate was added, 8- and 7-carboxyporphyrins increased, whereas protoporphyrin decreased. The dose responses for induction of either 5-aminolaevulinate synthase or cytochrome P-450 after a 20 h exposure to 3- to 5-carbon alcohols were identical. The results indicate that: simple alcohols can induce both enzymes; hydrophobicity increases their effectiveness; and induction of both enzymes are probably mediated by a common mechanism.  相似文献   

3.
The effects of inducers of cytochrome P-450 on haem biosynthesis from 5-aminolaevulinate were examined by using cultured chick-embryo hepatocytes. Cultures treated with either 2-propyl-2-isopropylacetamide or 3-methylcholanthrene contained increased amounts of cytochrome P-450 and haem. After treatment for 3 h with 5-amino[4-14C]laevulinate, the relative amounts of radioactivity accumulating as haem corresponded to the relative amounts of total cellular haem, but not to increases in the amounts of cytochrome P-450. Treatment with 5-aminolaevulinate did not alter cellular haem or cytochrome P-450 concentrations in either control or drug-treated cultures. The mechanism of the enhanced accumulation of radioactivity in haem was investigated. Although 2-propyl-2-isopropylacetamide enhanced the uptake of 5-aminolaevulinate and increased the cellular concentration of porphobilinogen 1.5-fold, these changes did not account for the increases in haem radioactivity. The inducing drugs had no effect on the rates of degradation of radioactive haem, but appeared to enhance conversion of protoporphyrin into haem. This latter effect was shown by: (1) a decreased accumulation of protoporphyrin from 5-aminolaevulinate in cells treated with inducers, and (2) complete prevention of this decrease if the iron chelator desferrioxamine was present. We conclude that inducers of cytochrome P-450 may increase haem synthesis not only by increasing activity of 5-aminolaevulinate synthase, but also by increasing conversion of protoporphyrin into haem.  相似文献   

4.
We have determined the dose-response curves (100-900 mg of Fe/kg body wt.) and the time course over 84 days for the effects of a single injection of iron-dextran on rat hepatic 5-aminolaevulinate synthetase, cytochrome P-450, iron content, and GSH (reduced glutathione). Porphyrins in liver and urine have also been measured. (1) At 2 days after treatment, a dose of 500 mg of Fe/kg produced a 20-fold increase in iron concentration, which was maintained for 14 days. Total hepatic iron remained constant over 63 days, falling slightly by 84 days. (2) The activity of 5-aminolaevulinate synthetase was maximally increased (6-fold) 12-24 h after iron treatment. By 48 h the activity fell to less than twice the control value and thereafter remained slightly above the control value (1.1-1.5-fold) until 84 days after iron treatment. Liver GSH concentrations were unaffected by iron. Porphyrins in liver and urine were either unchanged or decreased. (3) Hepatic cytochrome P-450 decreased after iron treatment to a minimum (63% of control) at 48 h after iron administration and gradually returned to the control value by 28 days. (4) Iron-dextran potentiated 2 allyl-2-isopropyl-acetamide-induced synthesis of hepatic 5-aminolaevulinate. Potentiation occurred if the drug was given at the same time or 36 h after iron administration, but did not occur if the drug was given 14 or 64 days after iron administration. (5) The results are discussed in relation to proposed mechanisms for the effects of iron on hepatic haem metabolism.  相似文献   

5.
Haemoglobin stimulates the peroxidation of lipids in two discernable phases. The first phase is inhibited by binding haemoglobin to the protein haptoglobin. The second phase is stimulated by complexable iron released from the haemoglobin molecule during the process of lipid peroxidation. This latter peroxidation is inhibitable by transferrin and the iron chelator desferrioxamine. Heat-denatured haemoglobin and haemin both stimulated lipid peroxidation but this is not inhibitable by haptoglobin. It is suggested that the haptoglobins play an important antioxidant role in vivo by preventing iron-stimulated formation of oxygen radicals.  相似文献   

6.
Reactive oxygen-derived free radicals form excessively during irradiation of biological structures, but also normally in many cellular oxidative processes, albeit in small amounts. Unless scavenged by protective mechanisms, such radicals may induce peroxidation of polyunsaturated fatty acids resulting in membrane damage. The process may be catalysed to a considerable extent by transitional metals with the capacity to form redox systems, such as Fe3+ in equilibrium Fe2+. In the present study, it is shown that radiation by X-rays and/or exposure to ionic iron (Fe3+) causes decreased survival in parallel with lysosomal labilization of cultured mouse peritoneal macrophages (MPMs). The latter event was demonstrated as a reduced capacity of lysosomes in living MPMs to retain acridine orange during photo-oxidative stress caused by continuous exposure to blue light of short wavelength. The effects of X-irradiation, and/or lysosomal iron-loading, could be counteracted by the addition of the .OH-scavenging drug dimethylsulfoxide (DMSO) to the cell culture medium. The findings suggest that X-irradiation may damage certain sensitive G0 cells, such as Kupffer cells, serous cells of salivary glands and old macrophages, which normally have substantial concentrations of metals within their vacuolar apparatus, possibly by lysosomal damage involving .OH-mediated lipid peroxidation.  相似文献   

7.
Lipid peroxidation was initiated by the addition of either ADP-complexed Fe3+ or cumene hydroperoxide to isolated rat hepatocytes and the resultant biochemical and morphological alterations investigated. As previously observed with microsomes, malonaldehyde formation was associated with the inactivation of glucose-6-phosphatase. Inhibition of microsomal oxidative drug metabolism was correlated with the release and subsequent inactivation of NADPH-cytochrome c reductase, whereas cytochrome P-450 destruction occurred only in the presence of high concentrations of the organic hydroperoxide which were associated with extensive malonaldehyde formation. Under these conditions there were also marked ultrastructural alterations in the hepatocytes which were not apparent after incubation in the presence of iron (less than or equal to 187 muM Fe3+). The latter treatment was, however, associated with moderate biochemical effects such as glucose-6-phosphatase inactivation and increased membrane permeability. The cellular defence system against lipid peroxidation is discussed and it is concluded that the isolated liver cell system provides a valuable tool for the study of lipid peroxidation and its pathological implications.  相似文献   

8.
The effects of three anthrapyrazoles and an aminoacridine derivative on doxorubicin- and iron-stimulated lipid peroxidation in rabbit hepatic microsomes have been characterized. Two anthrapyrazoles, CI-937 and CI-942, were potent inhibitors of lipid peroxidation with 15 microM drug inhibiting the rate of peroxidation 70 to 90%. In contrast CI-941 was relatively ineffective in inhibiting lipid peroxidation with only 35% inhibition occurring at 100 microM drug. CI-921, an aminoacridine derivative, diminished lipid peroxidation by 65% at 15 microM. All four drugs failed to decrease the rate of doxorubicin-stimulated NADPH oxidation at concentrations less than 50 microM, suggesting that inhibition of lipid peroxidation was not the result of diminished enzyme activity. CI-937 formed a 2:1 complex with ferric ion, KD = 47 microM, which was reversible with EDTA.  相似文献   

9.
Effects of three mutant genes, CAT1-2d, cat2-1 and hex2-3, on catabolite repression of mitochondrial cytochromes and the first two enzymes of haem biosynthesis were compared. The CAT1-2d mutation gave no resistance to glucose, whereas cat2-1 endowed both cytochromes and 5-aminolaevulinate dehydratase with resistance, but did not alter the effect of glucose on 5-aminolaevulinate synthase. The hex2-3 mutation caused repression resistance of cytochromes and of the two haem biosynthetic enzymes. hex2-3 strains also accumulated intracellular 5-aminolaevulinate. Co-inheritance of the latter traits, sensitivity to maltose inhibition and ability to grow on raffinose in the presence of 2-deoxyglucose, demonstrated that the pleiotropic phenotype is a function of the single gene hex2-3. Revertants which grew on maltose regained sensitivity to deoxyglucose and exhibited normal sensitivity of cytochromes and haem biosynthesis enzymes to repression. Addition of the hex1-18 mutation, which renders cytochromes resistant to repression, to a cat2-1 strain did not produce the same effect on 5-aminolaevulinate synthase as hex2-3. It is concluded that repression patterns of haem and cytochrome biosynthesis are substantially affected by hex2-3 and cat2-1 but not by CAT1-2d.  相似文献   

10.
Like iron ions copper ions are also able to stimulate the NADPH-dependent lipid peroxidation in rat liver microsomes. This effect is strongly dependent on the concentration of Cu2+ added. Initial concentrations of Cu2+ above 50 microM completely inhibit the formation of malonaldehyde. The activator and inhibitor functions may be interpreted by a simultaneous participation of Cu+ ions formed in the chain branching and termination reaction of the free radical lipid peroxidation process. Inhibition studies with pCMB and the His-reagent diethyl pyrocarbonate indicate an essential role of cysteine and histidine residues in the Cu+-NADPH-dependent lipid peroxidation process.  相似文献   

11.
渗透胁迫下稻苗中铁催化的膜脂过氧化作用   总被引:12,自引:0,他引:12  
在-0.7MPa渗透胁迫下,水稻幼苗体内和H2O2大量产生,Fe2+积累,膜脂过氧化作用加剧。水稻幼苗体内Fe2+含量与膜脂过氧化产物MDA含量呈极显著的正相关。外源Fe2+、Fe3+、H2O2、Fe2++H2O2、DDTC均能刺激膜脂过氧化作用,而铁离子的螯合剂DTPA则有缓解作用。OH的清除剂苯甲酸钠和甘露醇能明显地抑制渗透胁迫下Fe2+催化的膜脂过氧化作用。这都表明渗透胁迫下水稻幼苗体内铁诱导的膜脂过氧化作用主要是由于其催化Fenton型Haber-Weiss反应形成OH所致。  相似文献   

12.
The Effect of Magnesium on Oxidative Neuronal Injury In Vitro   总被引:7,自引:0,他引:7  
Abstract: The effect of magnesium on the oxidative neuronal injury induced by hemoglobin was assessed in murine cortical cell cultures. Exposure to 5 µ M hemoglobin in physiologic (1 m M ) magnesium for 26 h resulted in the death of about one-half the neurons and a sixfold increase in malondialdehyde production; glia were not injured. Increasing medium magnesium to 3 m M reduced neuronal death by about one-half and malondialdehyde production by about two-thirds; neuronal death and lipid peroxidation were approximately doubled in 0.3 m M magnesium. Comparable results were observed in spinal cord cultures. The NMDA antagonist MK-801 weakly attenuated hemoglobin neurotoxicity in low-magnesium medium, but tended to potentiate injury in physiologic magnesium. Incubation in low-magnesium medium alone for 24 h reduced cellular glutathione by ∼50% in mixed neuronal and glial cultures but by only 10% in pure glial cultures. The iron-dependent oxidation of phosphatidylethanolamine liposomes was attenuated in a concentration-dependent fashion by 2.5–10 m M magnesium; a similar effect was provided by 0.01–0.1 m M cobalt. However, oxidation was weakly enhanced by 0.5–1 m M magnesium. These results suggest that the vulnerability of neurons to iron-dependent oxidative injury is an inverse function of the extracellular magnesium concentration. At high concentrations, magnesium inhibits lipid peroxidation directly, perhaps by competing with iron for phospholipid binding sites. At low concentrations, enhancement of cell death may be due to the combined effect of increased NMDA receptor activity, glutathione depletion, and direct potentiation of lipid peroxidation.  相似文献   

13.
The antioxidative property of green tea against iron-induced oxidative stress was investigated in the rat brain both in vivo and in vivo. Incubation of brain homogenates at 37 degrees C for 4 hours in vitro increased the formation of Schiff base fluorescent products of malonaldehyde, an indicator of lipid peroxidation. Auto-oxidation (without exogenous iron) of brain homogenates was inhibited by green tea extract in a concentration-dependent manner. Moreover, incubation with iron (1 microM) elevated lipid peroxidation of brain homogenates after 4-hour incubation at 37 degrees C. Co-incubation with green tea extract dose-dependently inhibited the iron-induced elevation in lipid peroxidation. For the in vivo studies: ferrous citrate (iron, 4.2 nmoles) was infused intranigrally and induced degeneration of the nigrostriatal dopaminergic system of rat brain. An increase in lipid peroxidation in substantia nigra as well as a decrease in dopamine content in striatum was observed seven days after the iron infusion. Intranigral infusion of green tea extract alone did not increase, and in some cases, even decreased lipid peroxidation in substantia nigra. Co-infusion of green tea extract prevented oxidative injury induced by iron. Both iron-induced elevation in lipid peroxidation in substantia nigra and iron-induced decrease in dopamine content in striatum were suppressed. Oral administration of green tea extract for two weeks did not prevent the iron-induced oxidative injury in nigrostriatal dopaminergic system. Our results suggest that intranigral infusion of green tea extract appears to be nontoxic to the nigrostriatal dopaminergic system. Furthermore, the potent antioxidative action of green tea extract protects the nigrostriatal dopaminergic system from the iron-induced oxidative injury.  相似文献   

14.
Iron and aluminum complexes of nitrilotriacetic acid cause severe nephrotoxicity in Wistar rats. In addition, a high incidence of renal cell carcinoma is seen in ferric nitrilotriacetate-treated animals. The present study was performed to see if lipid peroxidation is involved in ferric nitrilotriacetate toxicity. Ferric nitrilotriacetate had more bleomycin-detectable 'free' iron than any ferric salt, while iron complexed with desferrioxamine or ferric chondroitin sulfate had none. The toxicity of ferric nitrilotriacetate in vivo was more pronounced in vitamin E-deficient rats. A thiobarbituric acid-reactive substance was present in the kidneys of vitamin E-deficient rats in amounts markedly elevated compared to vitamin E-sufficient, or vitamin E-supplemented rats. Non-complexed nitrilotriacetate or aluminum nitrilotriacetate did not produce any thiobarbituric acid-reactive substance in vitamin E-sufficient rats died by the 58th day of administration. We suggest that the iron-stimulated production of free radicals leading to lipid peroxidation is the major cause of ferric nitrilotriacetate-mediated renal toxicity. Vitamin E, a known scavenger of free radicals, is effective in protecting against this iron-induced toxicity.  相似文献   

15.
When rat liver microsomes were incubated with NADPH, the major products were hydroperoxides which increased with time indicating that endogenous iron content is able to promote lipid peroxidation. The addition of either 5 microM Fe2+ or Fe3+ ions strongly enhanced the hydroperoxide formation rate. However, due to the hydroperoxide breakdown, hydroperoxide concentration decreased with time in this case. Higher ferrous or ferric iron concentration did not change the situation much, in that both hydroperoxide breakdown and formation were similar to those when NADPH only was present in the incubation medium. After lipid peroxidation, analysis of fatty acids indicated that the highest amount of peroxidized PUFA occurred in the presence of 5 microM of either Fe2+ or Fe3+. This analysis also showed that after 8 min incubation with low iron concentration, PUFA depletion was about 77% of that observed after 20 min, whereas without any iron addition or in the presence of 30 microM of either Fe3+, PUFA decrease was only about 37% of that observed after 20 min. As far as the optimum Fe2+/Fe3+ ratio required to promote the initiation of microsomal lipid peroxidation in rat liver is concerned, the highest hydroperoxide formation was observed with a ratio ranging from 0.5 to 2. These results indicate that microsomal lipid peroxidation induced by endogenous iron is speeded up by the addition of low concentrations of either Fe2+ or Fe3+ ions, probably because free radicals generated by hydroperoxide breakdown catalyze the propagation process. In experimental conditions unfavourable to hydroperoxide breakdown the principal process is that of the initiation of lipid peroxidation.  相似文献   

16.
The effect of various fatty acids on lipid peroxidation of liver microsomes induced by different methods in vitro was studied using oxygen uptake and malonaldehyde (MDA) production. It was observed that fatty acids with a single double bond are effective inhibitors of peroxidation. Stereo and positional isomers of oleic acid were equally effective as oleic acid. There was an absolute requirement for a free carboxyl group, since methyl esters of fatty acids and long-chain saturated and unsaturated hydrocarbons could not inhibit peroxidation. Saturated fatty acids with a chain length of 12-16 carbon atoms showed inhibition, whereas more than 18 carbon atoms reduced the inhibitory capacity. Fatty acids of lower chain length such as capric and caprylic acids did not show inhibition. Fatty acid inhibition was partially reversed by increasing the concentration of iron in the system. Peroxidation induced by methods which were independent of iron was not inhibited by fatty acids. It was observed that intestinal microsomes which were resistant to peroxidation due to the presence of nonesterified fatty acids in their membrane lipids were able to peroxidise by methods which do not require iron. These results suggest that certain fatty acids inhibit peroxidation by chelating available free iron. In addition, they may also be involved in competing with the esterified fatty acids in the membrane lipids which are the substrates for peroxidation.  相似文献   

17.
Amiodarone is an iodinated benzofuran derivative largely used as an antiarrhythmic. Owing to the sensitivity of heart tissue to radicals, amiodarone was assayed for putative effects on lipid peroxidation studied in liposomes of soybean phosphatidylcholine and of bovine heart mitochondrial lipids used as model systems. Lipid peroxidations were initiated with Fe2+/ascorbic acid, and with peroxyl radicals generated from the azocompounds, AAPH and AMVN. These assays were carried out by following the quenching of the fluorescent probe cis-parinaric acid and by monitoring oxygen consumption. It has been ascertained that amiodarone does not protect or potentiate significantly the lipid peroxidation both lipidic systems. To fully ascertain the neutral behaviour of amiodarone in the lipid peroxidation process, the degradation of phospholipid acyl chains has been checked by GLC. These data confirm that amiodarone does not protect or potentiate lipid peroxidation to a significant extent. It is concluded that the limited effects of amiodarone might be related only indirectly with the lipid peroxidation. It is possible that the drug causes limited conformational and biophysical alterations in membrane phospholipid bilayers that can affect the process of peroxidation. Therefore, it is concluded that the therapeutic effects and benefits as a heart antiarrhythmic agent are independent of lipid peroxidation processes. Furthermore, the interaction of the drug with lipid bilayers does not induce significant conformational perturbations that could significantly favour or depress the peroxidation process.  相似文献   

18.
Oxygen free radicals damage cells through peroxidation of membrane lipids. Gastrointestinal mucosal membranes were found to be resistant to in vitro lipid peroxidation as judged by malonaldehyde and conjugated diene production and arachidonic acid depletion. The factor responsible for this in this membrane was isolated and chemically characterised as the nonesterified fatty acids (NEFA), specifically monounsaturated fatty acid, oleic acid. Authentic fatty acids when tested in vitro using liver microsomes showed similar inhibition. The possible mechanism by which NEFA inhibit peroxidation is through iron chelation and iron-fatty acid complex is incapable of inducing peroxidation. Free radicals generated independent of iron was found to induce peroxidaton of mucosal membranes. Gastrointestinal mucosal membranes were found to contain unusually large amount of NEFA. Circulating albumin is known to contain NEFA which was found to inhibit iron induced peroxidation whereas fatty acid free albumin did not have any effect. Addition of individual fatty acids to this albumin restored its inhibitory capacity among which monounsaturated fatty acids were more effective. These studies have shown that iron induced lipid peroxidation damage is prevented by the presence of nonesterified fatty acids.  相似文献   

19.
H Monyer  D M Hartley  D W Choi 《Neuron》1990,5(2):121-126
We studied the protective efficacy of novel 21-aminosteroids against several forms of neuronal injury in murine cortical cell cultures. Concentrations of 200 nM to 20 microM partially attenuated the damage induced by glucose deprivation, combined oxygen-glucose deprivation, or exposure to NMDA; maximal protection was less than that produced by NMDA antagonists, but the combination of a 21-aminosteroid plus an NMDA antagonist produced a greater benefit than either drug alone. 21-Aminosteroid addition did not attenuate NMDA-induced whole-cell current, but did block almost all of the damage induced by exposure to iron, a protective action consistent with inhibition of free radical-mediated lipid peroxidation. Lipid peroxidation may be a downstream event mediating a portion of the injury triggered by excess stimulation of NMDA receptors.  相似文献   

20.
Rats were given daily injections of an iron sorbitol citric acid complex in a total dose of 50 mg Fe3+/100 g of body weight and either killed immediately after iron loading, or investigated 2 months later. Among the latter animals, one group was subjected to weekly phlebotomies in order to mobilize iron from the stores, while another group was not further treated. Quantitation of iron and malondialdehyde production was performed on homogenates of liver, kidney and spleen from controls and rats in the different experimental groups, and the distribution of iron in granular form was studied in the livers by means of electron microscopy. The results showed substantially increased amounts of iron in the organs studied after iron-loading and also augmented malondialdehyde production in the liver and kidney (but not in the spleen). A decreased malondialdehyde production was recorded two months after iron-loading in the kidney and spleen of non-bled animals; this decrease was exaggerated in the same organs from bled animals. The production of malondialdehyde as well as the iron content in the livers of both bled and non-bled rats 2 months after iron loading was higher than in the controls. The evidence obtained suggested that the accumulation of iron in the liver was causally related to increased lipid peroxidation. Judging from the morphological appearances this change did not result in cell damage, the only pertinent morphologic alteration being the occurrence of iron particles in the lysosomal vacuome and the cell sap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号