首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Follicular dendritic cells (FDC) are involved in the presentation of native Ags to B cells during the secondary immune response. Some authors consider FDC to be hemopoietic cells, whereas others believe them to be mesenchymal cells. The low proportion of FDC in the lymphoid follicle, together with technical difficulties in their isolation, make these cells difficult to study. We show that Fibroblast Medium can be used successfully to isolate and maintain FDC lines. In this culture medium, we obtained 18 FDC lines from human tonsils, which proliferated for as long as 18 wk and showed a stable Ag phenotype as detected by flow cytometry and RT-PCR. FDC lines were CD45-negative and expressed Ags associated to FDC (CD21, CD23, CD35, CD40, CD73, BAFF, ICAM-1, and VCAM-1) and Ags specific for FDC (DRC-1, CNA.42, and HJ2). These cell lines were also able to bind B cells and secrete CXCL13, functional activities characteristic of FDC. Nevertheless, the additional expression of STRO-1, together with CD10, CD13, CD29, CD34, CD63, CD73, CD90, ICAM-1, VCAM-1, HLA-DR, alkaline phosphatase, and alpha-smooth muscle actin (alpha-SM actin) indicated that FDC are closely related to bone marrow stromal cell progenitors. The expression of alpha-SM actin also relates FDC with myofibroblasts. Like myofibroblasts, FDC lines expressed stress fibers containing alpha-SM actin and were able to contract collagen gels under the effect of TGFbeta1 and platelet-derived growth factor. These findings suggest that FDC are a specialized form of myofibroblast and derive from bone marrow stromal cell progenitors.  相似文献   

2.
3.
Deficient thymopoiesis and retarded recovery of newly developed CD4(+) T cells is one of the most important determinants of impaired immunocompetence after hemopoietic stem cell transplantation. Here we evaluated whether Fms-like tyrosine kinase 3 (Flt3) ligand (FL) alone or combined with IL-7 affects T cell recovery, thymopoiesis, and lymphoid progenitor expansion following bone marrow transplantation in immunodeficient mice. FL strongly accelerated and enhanced the recovery of peripheral T cells after transplantation of a low number of bone marrow cells. An additive effect on T cell recovery was not observed after coadministration of IL-7. Lineage(-)sca-1(+)c-kit(+)flt3(+) lymphoid progenitor cell numbers were significantly increased in bone marrow of FL-treated mice before recovery of thymopoiesis. Thymocyte differentiation was advanced to more mature stages after FL treatment. Improved T cell recovery resulted in better immunocompetence against a post-bone marrow transplantation murine CMV infection. Collectively, our data suggest that FL promotes T cell recovery by enhanced thymopoiesis and by expansion of lymphoid progenitors.  相似文献   

4.
Congenital agranulocytosis is a rare fatal infantile disease characterised by recurrent bacterial infections, persistent absence of neutrophils and maturation arrest at the promyelocyte/myelocyte stage. The effectiveness of retinoic acid in inducing differentiation of congenital agranulocytosis marrow myeloid progenitor cells was studied. Non-adherent mononuclear marrow cells were treated in an in vitro culture with retinoic acid at various concentrations from 1nM to 1 microM for seven days. Morphological and functional differentiation into mature granulocytes was induced by retinoic acid in a dose-response stimulation with a maximum response at a concentration of 1 microM. These results suggest a potential therapeutic role for retinoic acid in the treatment of congenital agranulocytosis.  相似文献   

5.
Dendritic cells (DC) mature upon infectious agent detection to elicit immune responses. It has been suggested that T cells influence peripheral DC function. However, it is not known if lymphocytes influence DC progenitors. Therefore, we determined the ability of bone marrow progenitors from T and B cell-deficient mice to generate functional DC. We report that bone marrow-derived DC from RAG-2(-/-) mice differentiate and proliferate normally. Moreover, such generated DC efficiently internalize particles, mature in response to various Toll-like receptor engagement, and activate allogenic T cells. This work strongly supports that early signals delivered during DC ontogeny by mature lymphocytes do not influence the functional differentiation of DC progenitors.  相似文献   

6.
7.

Background

Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs) stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs) and plasmacytoid (pDCs) are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown.

Methods

Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d) prior to transplanting into C57BL/6 mice (H-2b), followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+).

Results

Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production.

Conclusion

Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.  相似文献   

8.
《Cell reports》2023,42(8):112881
  1. Download : Download high-res image (203KB)
  2. Download : Download full-size image
  相似文献   

9.
10.
The use of electromagnetic fields (EMFs) to treat nonunion fractures developed from observations in the mid‐1900s. Whether EMF directly regulates the bone marrow mesenchymal stem cells (MSCs), differentiating into osteoblasts or adipocytes, remains unknown. In the present study, we investigated the roles of sinusoidal EMF of 15 Hz, 1 mT in differentiation along these separate lineages using rat bone marrow MSCs. Our results showed that EMF promoted osteogenic differentiation of the stem cells and concurrently inhibited adipocyte formation. EMF increased alkaline phosphatase (ALP) activity and mineralized nodule formation, and stimulated osteoblast‐specific mRNA expression of RUNX2, ALP, BMP2, DLX5, and BSP. In contrast, EMF decreased adipogenesis and inhibited adipocyte‐specific mRNA expression of adipsin, AP‐2, and PPARγ2, and also inhibited protein expression of PPARγ2. These observations suggest that commitment of MSCs into osteogenic or adipogenic lineages is influenced by EMF. Bioelectromagnetics 31:277–285, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
Murine polymicrobial sepsis is associated with a sustained reduction of dendritic cell (DC) numbers in lymphoid organs and with a dysfunction of DC that is considered to mediate the chronic susceptibility of post-septic mice to secondary infections. We investigated whether polymicrobial sepsis triggered an altered de novo formation and/or differentiation of DC in the bone marrow. BrdU labeling experiments indicated that polymicrobial sepsis did not affect the formation of splenic DC. DC that differentiated from bone marrow (bone marrow-derived DC [BMDC]) of post-septic mice released enhanced levels of IL-10 but did not show an altered phenotype in comparison with BMDC from sham mice. Adoptive transfer experiments of BMDC into naive mice revealed that BMDC from post-septic mice impaired Th1 priming but not Th cell expansion and suppressed the innate immune defense mechanisms against Pseudomonas bacteria in the lung. Accordingly, BMDC from post-septic mice inhibited the release of IFN-γ from NK cells that are critical for the protection against Pseudomonas. Additionally, sepsis was associated with a loss of resident DC in the bone marrow. Depletion of resident DC from bone marrow of sham mice led to the differentiation of BMDC that were impaired in Th1 priming similar to BMDC from post-septic mice. Thus, in response to polymicrobial sepsis, DC precursor cells in the bone marrow developed into regulatory DC that impaired Th1 priming and NK cell activity and mediated immunosuppression. The absence of resident DC in the bone marrow after sepsis might have contributed to the modulation of DC differentiation.  相似文献   

13.
We have reported that GM-CSF treatment of NOD mice suppressed diabetes by increasing the number of tolerogenic dendritic cells (tDCs) and Tregs in the periphery. Here, we have investigated whether GM-CSF acted on NOD bone marrow DCs precursors to skew their differentiation to tDCs. DCs were generated from the bone marrow of GM-CSF-treated (GM.BMDCs) and PBS-treated (PBS.BMDCs) NOD mice and were assessed for their ability to acquire tolerogenic properties. Upon LPS stimulation, GM.BMDCs became fully mature, expressed high levels of PD-L1 and produced more IL-10 and less IL-12p70 and IFN-γ than PBS.BMDCs. In addition, LPS-stimulated GM.BMDCs possessed a reduced capacity to activate diabetogenic CD8+ T cells in a PD-1/PD-L1-dependent manner. A single injection of LPS-stimulated GM.BMDCs in NOD mice resulted in long-term protection from diabetes, in contrast to LPS-stimulated PBS.BMDCs. Our results showed that GM-CSF-treatment acted on bone marrow precursors to skew their differentiation into tDCs that protected NOD mice against diabetes.  相似文献   

14.
Methionine enkephalin (MENK), the endogenous neuropeptide, is known to exert direct effects on the neuroendocrine and the immune systems and participates in regulation of various functions of cells related to both the innate and adaptive immune systems. Dendritic cells (DCs) play important role in initiating and regulating T cell responses. The aim of this work is to investigate the effects of MENK on differentiation, maturation, and function of DCs derived from murine bone marrow progenitors (BM-derived DCs). Our result showed that MENK could induce BM-derived DCs to polarize predominantly to mDC subtype, rather than pDC both in vivo and in vitro, and this was in favor of Th1 response. BM-derived DCs, after treatment with MENK, up-regulated the expressions of MHC class II and key costimulatory molecules. Result by RT-PCR showed MENK could increase expressions of delta and kappa receptors on BM-derived DCs. Also MENK promoted BM-derived DCs to secret higher levels of proinflammatory cytokines of IL-12p70, TNF-α. Furthermore, differentiated BM-derived DCs treated with MENK displayed higher activity to induce allogeneic T cell proliferation and MENK also inhibited tumor growth in vivo and induced apoptosis of tumor cells in vitro. Thus, it is concluded that MENK could be an effective inducer of BM-derived DCs and might be a new therapeutic agent for cancer, as well as other immune handicapped disease. Also we may consider MENK as a potential adjuvant in vaccine preparation.  相似文献   

15.
16.
A detailed analysis of normal myeloid differentiation was performed using mutlidimensional flow cytometry. Based on two light scattering and three color immunofluorescence signals, the normal maturation pathways of both the monocyte and neutrophil lineages could be elucidated. Gradual changes of light scattering properties and cell surface antigen expression defined the pathways of each of the lineages. The consistency of the location of these lineage specific pathways found in normal individuals provided the basis for the discrimination between normal and leukemic cells in acute myeloid leukemia (ANLL). The position of leukemic cells in patients with ANLL in a five-dimensional space was compared with the position of the maturation tracks in normal individuals. The expression of normal antigens on leukemic cells provided the tools to: (1) distinguish normal from clonal populations of leukemic cells in all 15 patients; (2) detect a lineage predominance, either monocytic or neutrophilic, in all 15 patients; (3) detect maturation heterogeneity in all 15 patients. Although maturation pathways of the monocytic and the neutrophilic lineages were analogous to the normal patterns they were distinct in several ways. The expression of normal antigens on leukemic cells may provide the tools to: (1) obtain a new frame-work for classification of leukemia based on the ability to quantify the aberrant antigen expression and to define a 'distance from normal' based on the characteristics studied (the maturation heterogeneity of the leukemic cells also can be correlated with the clinical outcome of the patients); (2) detect minimal residual disease using the difference in locations of the leukemic cells in the multidimensional space from the normal maturation pathways (3) monitor relapse and changes in phenotypes which may accompany chemotherapy, suggesting the appearance of variant or new clones.  相似文献   

17.
Melatonin’s therapeutic potential has been highly underestimated because its biological functional roles are diverse and relevant mechanisms are complicated. Among the numerous biological activities of melatonin, its regulatory effects on pluripotent mesenchymal stem cells (MSCs), which are found in bone marrow stem cells (BMSCs) and adipose tissue (AD-MSC), have been recently proposed, which has received increasingly more attention in recent studies. Moreover, receptor-dependent and receptor-independent responses to melatonin are identified to occur in these cells by regulating signaling pathways, which drive the commitment and differentiation of MSCs into osteogenic, chondrogenic, or adipogenic lineages. Therefore, the aim of our current review is to summarize the evidence related to the utility of melatonin as a regulatory agent by focusing on its relationship with the differentiation of MSCs. In particular, we aimed to review its roles in promoting osteogenic and chondrogenic differentiation and the relevant signaling cascades involved. Also, the roles that melatonin and, particularly, its receptors play in these processes are highlighted.  相似文献   

18.
It has been unclear whether the progenitors colonizing the thymus are multipotent or T cell lineage restricted. We investigated the developmental potential of hematopoietic progenitors in various populations of liver and blood cells from day 12 fetuses using the recently established in vitro experimental system effective in determining the capability of individual progenitors to generate T, B, and myeloid cells. Multipotent progenitors (p-Multi) were exclusively found in the Sca-1 high-positive (Sca-1high) subpopulation of lineage marker (Lin)-c-kit+CD45+ fetal liver cells. Restriction of developmental capacity begins at the Sca-1high stage, and a large majority of progenitors in the Sca-1low or Sca-1- population are restricted to generate T, B, or myeloid cells. Such a lineage commitment or restriction taking place in the fetal liver is independent of the thymus, because no difference in the proportion of different types of progenitors were seen between nu/nu and nu/+ fetuses. T cell lineage-restricted progenitors (p-T) were abundant in the blood of day 12 fetuses, whereas p-Multi were undetectable. It was further shown that the p-Multi generated a large number of B and myeloid cells in the thymic lobe. These results strongly suggest that it is p-T but not p-Multi that migrate into the thymus.  相似文献   

19.
IL-3, a cytokine with hematopoietic differentiating capability, induced murine bone marrow cells to differentiate into cells resembling osteoclasts. The cells resulting from treatment with IL-3 were multi-nucleated and demonstrated tartrate-resistant acid-phosphatase activity, as do resident osteoclasts found in bone. IL-3-induced osteoclast-like cell development in the absence of serum-derived vitamin D metabolites, and a mAb that inhibited IL-3-induced proliferation of an addicted cell line also inhibited the development of osteoclasts in the presence of IL-3. The same Ab had no effect on 1 alpha, 25-dihydroxyvitamin D3-induced differentiation of osteoclasts. This newly described function of IL-3 may indicate a role for activated T cells in the bone resorption seen with rheumatoid arthritis.  相似文献   

20.
Bone marrow-derived immunomodulatory cytokines impart a critical function in the regulation of innate immune responses and hemopoiesis. However, the source of immunomodulatory cytokines in murine bone marrow and the cellular immune mechanisms that control local cytokine secretion remain poorly defined. Herein, we identified a population of resident murine bone marrow myeloid DEC205(+)CD11c(-)B220(-)Gr1(+)CD8alpha(-)CD11b(+) cells that respond to TLR2, TLR4, TLR7, TLR8, and TLR9 agonists as measured by the secretion of proinflammatory and anti-inflammatory cytokines in vitro. Phenotypic and functional analyses revealed that DEC205(+)CD11b(+)Gr-1(+) bone marrow cells consist of heterogeneous populations of myeloid cells that can be divided into two main cell subsets based on chemokine and TLR gene expression profile. The DEC205(+)CD11b(+)Gr-1(low) cell subset expresses high levels of TLR7 and TLR9 and was the predominant source of IL-6, TNF-alpha, and IL-12 p70 production following stimulation with the TLR7 and TLR9 agonists CpG and R848, respectively. In contrast, the DEC205(+)CD11b(+)Gr-1(high) cell subset did not respond to CpG and R848 stimulation, which correlated with their lack of TLR7 and TLR9 expression. Similarly, a differential chemokine receptor expression profile was observed with higher expression of CCR1 and CXCR2 found in the DEC205(+)CD11(+)Gr-1(high) cell subset. Thus, we identified a previously uncharacterized population of resident bone marrow cells that may be implicated in the regulation of local immune responses in the bone marrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号