首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Age-dependent accumulation of 137Cs in the muscles and bodies of the pike Esox lucius (aged two to seven years) inhabiting a section of the Yenisei River polluted with artificial radionuclides has been studied. The content of 137Cs in muscles varied from 0.5 to 7.0 Bq/kg of fresh weight. The maximum content of the radionuclide has been found in juveniles. The content of 137Cs in pike muscles and body decreased considerably with age. The high content of 137Cs in the muscles of juveniles is probably a consequence of their higher intensity of feeding as compared to older individuals, which is due to the intense growth of juveniles.  相似文献   

2.
The assessment doses due to ingestion of 137Cs and 90Sr for the population suffering from the Chernobyl accident was performed on the basis of the new mechanistic ecological model for assessment of radiological consequences of agricultural lands contamination (EMARC). The EMARC model allows estimation of internal doses based on ecological factors influencing the contamination of foodstuff, for the post-accidental years in the countries of the former Soviet Union. The EMARC model allows estimation of all quantities required in radiation hygiene practice. For example, the proposed analytical method may be used for both retrospective dose reconstruction and prospective estimates of annual dose and integrated “life-time” dose, for different age intervals. According to the EMARC model, estimated reference “life-time” doses for adults are between 7 and 269 μSv kBq−1 m2 for 137Cs, and between 25 and 235 μSv kBq−1 m2 for 90Sr. Maximal doses were estimated for persons who were 3, 9 and 11 years old, at the time of the accident and these doses exceed those for adults by a factors of 1, 5 for 90Sr, and 1.4 for 137Cs.  相似文献   

3.
The input of allochthonous plant material, largely terrestrial in origin, during the spring spate is a major source of primary production for montane lake ecosystems such as Øvre Heimdalsvatn and is readily incorporated into the food chain leading to fish. The transport from the lake catchment of allochthonous plant material contaminated with Chernobyl 137Cs in 1986 was investigated from 1989 to 2008. 137Cs activity concentrations were determined for both total samples before sorting and for the separate components in the two main tributary streams, Brurskardbekken and Lektorbekken, as well as the outflow river, Hinøgla. The total samples showed a similar long-term decline at all sites, although 137Cs activity concentrations were generally somewhat higher in Hinøgla compared to the tributary streams. For the total samples, ecological half-lives were in the region of 4–5 years. However, there were major differences between components. The 137Cs activity content of most components, including mosses, leaves of willow and woody material, decreased significantly over time. Lichens and juniper declined, but the relationship was not significant, while leaves of mountain birch and dwarf birch showed no obvious trend over the 20-year period.  相似文献   

4.
There are few data reported on radionuclide contamination in Antarctica. The aim of this paper is to report 137Cs, 90Sr and 238,239+240Pu and 40K activity concentrations measured in biological samples collected from King George Island (Southern Shetlands, Antarctica), mostly during 2001–2002. The samples included: bones, eggshells and feathers of penguin Pygoscelis papua, bones and feathers of petrel Daption capense, bones and fur of seal Mirounga leonina, algae Himantothallus grandifolius, Desmarestia anceps and Cystosphaera jacquinotii, fish Notothenia corriceps, sea invertebrates Amphipoda, shells of limpet Nacella concina, lichen Usnea aurantiaco-atra, vascular plants Deschampsia antarctica and Colobanthus quitensis, fungi Omphalina pyxidata, moss Sanionia uncinata and soil. The results show a large variation in some activity concentrations. Samples from the marine environment had lower contamination levels than those from terrestrial ecosystems. The highest activity concentrations for all radionuclides were found in lichen and, to a lesser extent, in mosses, probably because lichens take up atmospheric pollutants and retain them. The only significant correlation (except for that expected between 238Pu and 239+240Pu) was noted for moss and lichen samples between plutonium and 90Sr. A tendency to a slow decrease with time seems to be occurring. Analyses of the activity ratios show varying fractionation between various radionuclides in different organisms. Algae were relatively more highly contaminated with plutonium and radiostrontium, and depleted with radiocesium. Feathers had the lowest plutonium concentrations. Radiostrontium and, to a lesser extent, Pu accumulated in bones. The present low intensity of fallout in Antarctic has a lower 238Pu/239+240Pu activity ratio than that expected for global fallout.  相似文献   

5.
To date, there is scant information on in vivo induction of chromosomal damage by heavy ions found in space (i.e. 56Fe ions). For radiation-induced response to be useful for risk assessment, it must be established in in vivo systems especially in cells that are known to be at risk for health problems associated with radiation exposure (such as hematopoietic cells, the known target tissue for radiation-induced leukemia). In this study, the whole genome multicolor fluorescence in situ hybridization (mFISH) technique was used to examine the in vivo induction of chromosomal damage in hematopoietic tissues, i.e. bone marrow cells. These cells were collected from CBA/CaJ mice at day 7 following whole-body exposure to different doses of 1 GeV/amu 56Fe ions (0, 0.1, 0.5 and 1.0 Gy) or 137Cs γ rays as the reference radiation (0, 0.5, 1.0 and 3.0 Gy, at the dose rate of 0.72 Gy/min using a GammaCell40). These radiation doses were the average total-body doses. For each radiation type, there were four mice per dose. Several types of aberrations in bone marrow cells collected from mice exposed to either type of radiation were found. These were exchanges and breaks (both chromatid- and chromosome-types). Chromosomal exchanges included translocations (Robertsonian or centric fusion, reciprocal and incomplete types), and dicentrics. No evidence of a non-random involvement of specific chromosomes in any type of aberrations observed in mice exposed to 56Fe ions or 137Cs γ rays was found. At the radiation dose range used in our in vivo study, the majority of exchanges were simple. Complex exchanges were detected in bone marrow cells collected from mice exposed to 1 Gy of 56Fe ions or 3 Gy of 137Cs γ rays only, but their frequencies were low. Overall, our in vivo data indicate that the frequency of complex chromosome exchanges was not significantly different between bone marrow cells collected from mice exposed to 56Fe ions or 137Cs γ rays. Each type of radiation induced significant dose-dependent increases (ANOVA, P < 0.01) in the frequencies of chromosomal damage, including the numbers of abnormal cells. Based upon the linear-terms of dose-response curves, 56Fe ions were 1.6 (all types of exchanges), 4.3 (abnormal cells) and 4.2 (breaks, both chromatid- and chromosome-types) times more effective than 137Cs γ rays in inducing chromosomal damage.  相似文献   

6.
The accumulation levels of anthropogenic 90Sr and 134Cs and 137Cs radionuclides in the marsh frog have been studied in the areas of the Beloyarskii water-storage reservoir (an industrial storm-water discharge channel of the nuclear power station) and the Verkhnii Tagil water-storage reservoir (the Tagil River down-stream of the dam). No significant distinction in the radionuclide accumulation (90Sr and 137Cs) depending on the amphibian sex and age is detected. Comparable levels of the accumulation of radionuclides in the marsh frog, when compared to the other representatives of the water ecosystem, are estimated. An assumption of the presence of some unidentified source of radioactive contamination of marsh frogs has been made; cesium-137 may be transferred from it to the Tagil River by the frogs.  相似文献   

7.
Spring wheat (Triticum aestivum L. cv. Tonic) was grown for 16 days in a sandy loam soil which was contaminated with 137Cs. The soil was fertilised with K at three rates (0,1 and 2 mmol K per 950 g dry soil) and with NO3 --N at two rates (0 and 2 mmol per 950 g dry soil) in a factorial design. The 137Cs Activity Concentration (AC) in the shoot tissue significantly reduced 8.2-fold (nil N treatment, p<0.001) and 9.3-fold (highest N dose, p<0.001) with increasing K supply. In contrast, the K application increased the 137Cs AC in soil solution 1.7 fold (nil N treatment) or had no significant effect (highest N dose). At similar K application, the application of N increased the 137Cs AC in the shoot compared to the control. This effect is most probably due to the increased NH4 + concentration in soil solution which increased the 137Cs AC in soil solution. The soil solution composition (137Cs and K concentration) in the rhizosphere was estimated from the average soil solution composition at day 16 and solute transport calculations. The 137Cs AC in the shoot tissue was predicted from the estimated soil solution composition in the rhizosphere and the relationship between K concentration and 137Cs uptake derived from a nutrient solution experiment. The predictions of 137Cs AC's in the shoot are qualitatively correct for the fertiliser effects but underestimate the observations between 1.4 and 9.9 fold.  相似文献   

8.
Spring wheat plants were grown in a 137Cs labelled nutrient solution, either in the presence or absence of NH4 as a secondary N source. Between 11 and 64 days after sowing (DAS), plants were harvested on nine occasions. The plants supplied with NH4 and NO3 had lower root 137Cs Activity Concentrations (AC) than those supplied with NO3 only. Shoot AC were equal in both nutrition treatments. Shoot and root 137Cs AC (dry weight basis) showed the same trends with plant age in both nutrition treatments. Shoot AC almost doubled between 11 and 28 DAS after which they gradually decreased concomitant with a similar decrease in K concentrations. Root AC were always higher than shoot AC and increased to a maximum at 35 DAS after which they fluctuated. Expressed on a tissue water basis, the 137Cs AC varied less during plant age than did dry weight based AC. Furthermore, root and shoot AC expressed on a tissue water basis were almost equal. It is shown that the initial increase in 137Cs AC in both root and shoot can largely be explained by the initial dilution of absorbed 137Cs in the unlabelled seedling tissues. No correlation was found between K and 137Cs distribution among ears, leaves, stems and roots in 64 old wheat plants. NH4 as a secondary N source in a nitrate nutrient solution marginally affected 137Cs distribution.Abbreviations AC activity concentrations - DAS days after sowing FAX no corresponding author: +3216321997  相似文献   

9.
The regularities of 137Cs distribution in trees (Pinus sylvestris and Betula pendula) growing in different types of forest ecosystems were investigated. High levels of heterogeneity of 137Cs activity concentrations in different parts of the trees, resulting from their varied metabolism have been shown. The data obtained demonstrate a non-uniform character of 137Cs distribution along the trunks, which can be explained by radio- nuclide fixation by the xylem vessel walls and by geometry changes along the tree trunk. It has been found that the radial distribution of 137Cs in the tree trunk is dependent on the availability of 137Cs in soil, which governs the transfer of this radionuclide via xylem sap and on the properties of the xylem. The accumulation of 137Cs by trees was influenced by the vertical distribution and availability of 137Cs in the soil as well as by the root biomass distribution in different soil horizons. A bioavailability factor, which takes into account the vertical distribution of radiocesium in soil, bioavailability of this radionuclide and distribution of root biomass in different soil horizons is proposed for comparative analyses of 137Cs transfer from soil to trees in different types of forest ecosystems. Received: 8 February 2000 / Accepted: 1 December 2000  相似文献   

10.
Paasikallio  A. 《Plant and Soil》1999,206(2):213-222
Biotite is a potassium rich mineral, which is used as a fertilizer in organic farming and as a soil amendment in conventional farming. Its ability to reduce 134Cs uptake by ryegrass from peat soil was studied in pot experiments and compared with zeolite, heavy clay, bentonite and apatite. In addition, the long-term effect of biotite on 137Cs uptake from peat soil was studied in the peat field. In the pot experiments in the first cut of ryegrass, the minerals decreased 134Cs uptake by plants in the following order: zeolite > heavy clay > bentonite > biotite > apatite. Apatite did not have any effect on the plant 134Cs level. In the later cuts, the uptake of 134Cs from biotite-treated soil decreased further while that from soils treated with other minerals remained unchanged or even increased. In general, 134Cs uptake by plants decreased with increasing mineral level. The decrease of 134Cs uptake became more efficient, especially at the early growth stage, by mixing small amounts of zeolite in biotite. The results of the field experiment indicated the long-term effect of biotite on reducing 134Cs uptake by plants. Biotite application rate was 30 t ha-1. The five-year mean of the plant/soil concentration ratio of 137Cs was 0.05 for biotite-treated soil, in contrast to 0.14 for the control soil. On the whole, biotite reduced considerably the 137Cs level of plants on peat soil and this effect was long-lasting. For an effective reduction of plant radiocesium a great quantity of biotite is needed and therefore it is most suitable for greenhouse cultivation where contaminated slightly decomposed peat is used as a growing medium.  相似文献   

11.
Nowadays, Monte Carlo calculations are commonly used for the evaluation of dose distributions and dose volume histograms in eye brachytherapy. However, currently available eye models have simple geometries, and main substructures of the eye are either not defined in details or not distinguished at all. In this work absorbed doses of eye substructures have been estimated for eye plaque brachytherapy using the most realistic eye model available, and compared with absorbed doses obtained with other available eye models. For this, a medium-sized tumour on the left sides of the right eye was considered. Dosimetry calculations were performed for four different eye models developed based on a literature review, and using a 12 mm Collaborative Ocular Melanoma Study plaque containing 131Cs, 103Pd, and 125I sources. Obtained results illustrate that the estimated doses received by different eye substructures strongly depend on the model used to represent the eye. It is shown here that using a non-realistic eye model leads to a wrong estimation of doses for some eye substructures. For example, dose differences of up to 35% were observed between the models proposed by Nogueira and co-workers and Yoriyaz and co-workers, while doses obtained by use of the models proposed by Lesperance and co-workers, and Behrens and co-workers differed up to 100 and 63% as compared to the situation when a realistic model was used, respectively. Moreover, comparing different radionuclides showed that the most uniform dose distribution in the considered tumour region was that from 131Cs, with a coefficient of variation of 33%. In addition, considering the realistic eye model, it was found that the radiosensitive region of the lens received more than the threshold dose of cataract induction (0.5 Gy), for all investigated radionuclides.  相似文献   

12.
Waegeneers  N.  Camps  M.  Smolders  E.  Merckx  R. 《Plant and Soil》2001,235(1):11-20
The differences in radiocaesium uptake between species were analysed in a series of solution culture and pot trials. Since radiocaesium uptake is very sensitive to the solution potassium (K) concentration, it was hypothesised that species depleting K in the rhizosphere to a larger extent, will have a higher radiocaesium uptake. Five species (bean, lettuce, winter barley, ryegrass and bentgrass) were grown for 18–21 days in nutrient solution spiked with 137Cs and at 4 K concentrations between 0.025 and 1.0 mM. Shoot 137Cs activities all decreased between 17- and 81-fold with increasing K supply. Shoot 137Cs activities were 4-fold different between species at the lowest K supply and 3.4-fold different at high K supply. The same five species were grown in two 134Cs spiked soils with contrasting exchangeable K but similar clay content. Shoot 134Cs activities were up to 19-fold higher in the soil with lowest exchangeable K. Differences in shoot activity concentrations between the species were only 4.5-fold in the high K soil, but were 15-fold in the low K soil. Bulk soil solution 134Cs and K concentration data were combined with radiocaesium uptake characteristics measured in solution culture to predict radiocaesium uptake from soil. Predictions were within 1.6-fold of observations in the high K soil but largely underestimated 134Cs uptake in lettuce, ryegrass and barley in the low K soil. A solute transport model was used to estimate K and radiocaesium concentrations in the rhizosphere. These calculations confirmed the assumption that higher radiocaesium uptake is found for species that deplete K in the rhizosphere to a larger extent.  相似文献   

13.

Aims

Hydro-biogeochemical processes in the rhizosphere regulate nutrient and water availability, and thus ecosystem productivity. We hypothesized that two such processes often neglected in rhizosphere models — diel plant water use and competitive cation exchange — could interact to enhance availability of K+ and NH4 +, both high-demand nutrients.

Methods

A rhizosphere model with competitive cation exchange was used to investigate how diel plant water use (i.e., daytime transpiration coupled with no nighttime water use, with nighttime root water release, and with nighttime transpiration) affects competitive ion interactions and availability of K+ and NH4 +.

Results

Competitive cation exchange enabled low-demand cations that accumulate against roots (Ca2+, Mg2+, Na+) to desorb NH4 + and K+ from soil, generating non-monotonic dissolved concentration profiles (i.e. ‘hotspots’ 0.1–1 cm from the root). Cation accumulation and competitive desorption increased with net root water uptake. Daytime transpiration rate controlled diel variation in NH4 + and K+ aqueous mass, nighttime water use controlled spatial locations of ‘hotspots’, and day-to-night differences in water use controlled diel differences in ‘hotspot’ concentrations.

Conclusions

Diel plant water use and competitive cation exchange enhanced NH4 + and K+ availability and influenced rhizosphere concentration dynamics. Demonstrated responses have implications for understanding rhizosphere nutrient cycling and plant nutrient uptake.
  相似文献   

14.
In order to find wheat cultivars with a minimum soil-to-grain transfer of fallout (137)Cs, 28 winter wheat cultivars were investigated at 3 different sites with different soil types in Bavaria, Germany. Each cultivar was grown on an area of 10 m(2) and harvested in August 1999. The soil-to-grain concentration ratios (C(r)) of (137)Cs varied by a factor of up to 3 from cultivar to cultivar at a given site and from site-to-site for a given cultivar. The mean C(r) values at the three sites, 4.2 x 10(-4), 4.9 x 10(-4) and 7.5 x 10(-4), differed significantly. The fact that no cultivar showed similar C(r) values at the three sites indicates a strong influence of the soil on C(r). The cultivars Flair, Kornett and Previa showed a minor uptake of (137)Cs compared with the mean of all cultivars at each site. Unlike (137)Cs, the (40)K concentrations in the wheat grains varied only within a small range (122-190 Bq kg(-1)) at each site, which is due to the potassium regulation by the plants. For both radionuclides, the differences between the root uptake characteristics of the cultivars may not only be explained by an inter-cultivar variability due to genetic differences between the cultivars, but also by an intra-cultivar variability due to different soil conditions.  相似文献   

15.
The present study evaluates the variations of 137Ba abundance in pectoral fin spine of 1-month-old juvenile Persian sturgeon (Acipenser persicus) upon marking using the stable isotope approach. The marking of the fish was achieved by incorporation of 137Ba2+ in the calcified lattice of the pectoral fin spine through substitution with structural Ca2+. This process was carried out by rearing juveniles in treatment tanks containing elevated concentrations of 137Ba for 1, 3 and 5 days. The marked fish were then retained in natural abundance fresh and brackish waters, to evaluate the trend of exchange of 137Ba from the fin spines. The abundance of 137Ba in fin spines during marking and post-marking experiments were detected by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that a significant isotope mark can be obtained with no mortality and 100% marking rate on the first day of exposure to the isotope. The marked juveniles maintained their isotopic signature for at least 25 days. Statistical analysis of the obtained 138Ba/137Ba ratios demonstrated that the successful incorporation of 137Ba2+ in pectoral fin spines provides an effective marking method for Persian sturgeon restocking programs.  相似文献   

16.
Potential for phytoextraction of137 Cs from a contaminated soil   总被引:4,自引:0,他引:4  
Potential for phytoremediation of a soil contaminated with radiocesium was investigated in three phases: (1) hydroponic screening for plant species capable of accumulating elevated levels of cesium in shoots, (2) investigation of several amendments for their potential to increase the bioavailability of 137Cs in the contaminated soil, and (3) bioaccumulation of radiocesium in shoots of plants grown in137 Cs-contaminated soil.The bioaccumulation ratio for Cs in shoots of hydroponically grown plants ranged between 38 and 165. From solution, dicot species accumulated 2- to 4-fold more cesium in shoots than grasses. In studies investigating the bioavailability of 137Cs in aged contaminated soil, ammonium salts were found to be the most effective desorbing agents, releasing approximately 25% of the137 Cs. The extent of 137Cs desorption from the soil increased with ammonium concentration up to 0.2 M. In a pot study conducted in a greenhouse, there was significant species-dependent variability in the ability to accumulate 137Cs in the shoot from contaminated soil. The ability to accumulate 137Cs from the soil increased in the order: reed canarygrass (Phalaris arundinacea) < Indian mustard (Brassica juncea) < tepary bean (Phaseolus acutifolius)< cabbage (B. oleracea var. capitata). It was also found that addition of NH4NO3 solution to the soil elicited a two- to twelve-fold increase in 137Cs accumulation in the shoot. The greatest amount of 137Cs (40 Bq g-1 dw) was removed in shoots of cabbage grown in contaminated soil amended with 80 mmols NH4NO3 kg-1 soil. Bioaccumulation ratios of 2–3 were obtained with the best performing plant species. These values are significantly greater than those previously reported in the literature (usually <0.1) for plants grown on aged contaminated soil. These results indicate that careful species selection along with amendments that increase the bioavailability of137 Cs in the soil could greatly enhance the prospects for the use of plants to remediate 137Cs-contaminated soils.  相似文献   

17.
Reed plants (Phragmites australis Trinius) grow not only in fresh and brackish water areas but also in arid and high salinity regions. Reed plants obtained from a riverside (Utsunomiya) were damaged by 257 mM NaCl, whereas desert plants (Nanpi) were not. When the plants were grown under salt stress, the shoots of the Utsunomiya plants contained high levels of sodium and low levels of potassium, whereas the upper part of the Nanpi plants contained low levels of sodium and high levels of potassium. One month salt stress did not affect potassium contents in either Utsunomiya or Nanpi plants, but it did dramatically increase sodium contents only in the Utsunomiya plants. The ratio of K+ to Na+ was maintained at a high level in the upper parts of the Nanpi plants, whereas the ratio markedly decreased in the Utsunomiya plants in the presence of NaCl. Accumulation of Na+ in the roots and Na+ efflux from the roots were greater in the Nanpi plants than in the Utsunomiya plants. These results suggest that the salt tolerance mechanisms of Nanpi reed plants include an improved ability to take up K+ to prevent an influx of Na+ and an improved ability to exclude Na+ from the roots.  相似文献   

18.
The behavior of radiocesium (137Cs) in aquatic plants (five species) and algae (three genera) grown in either a river (one sampling point) or pond (four sampling points) in the vicinity of the Fukushima Daiichi nuclear power plant was investigated. The 137Cs concentration of <0.45-μm fractions of water taken from the river and ponds was between 5.01 × 10?1 and 2.98 Bq/L, while that of sediment was between 4.85 × 103 and 5.72 × 104 Bq/kg dry weight. The ratio of 137Cs concentration of sediment/water in ponds was ~104. The sediment-to-plant transfer factor (TF) [(137Cs concentration Bq/kg dry weightplant) × (137Cs concentration Bq/kg dry weightsediment)?1] was also measured. For aquatic plants, the highest value was 5.55 for Potamogeton crispus from the river, while the lowest was 3.34 × 10?2 for P. distinctus from a pond. There were significant differences in values between aquatic plants belonging to the same genus. The water-to-plant TF [(137Cs concentration Bq/kg dry weightplant) × (137Cs concentration Bq/Lwater)?1] of filamentous algae (Spirogyra sp.) and cyanobacteria (coexisting Anabaena sp. and Microcystis sp.) were 2.39 × 103 and 1.26 × 103, respectively. The 137Cs concentration of cyanobacteria in pond water was 4.87 × 10?1 Bq/L, which was the same order of magnitude as the 137Cs concentration of pond water. Enrichment of 137Cs in cyanobacteria was not observed.  相似文献   

19.
Long-lived radionuclides such as 90Sr and 137Cs can be naturally or accidentally deposited in the upper soil layers where they emit β/γ radiation. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can accumulate and transfer radionuclides from soil to plant, but there have been no studies on the direct impact of ionizing radiation on AMF. In this study, root organ cultures of the AMF Rhizophagus irregularis MUCL 41833 were exposed to 15.37, 30.35, and 113.03 Gy gamma radiation from a 137Cs source. Exposed spores were subsequently inoculated to Plantago lanceolata seedlings in pots, and root colonization and P uptake evaluated. P. lanceolata seedlings inoculated with non-irradiated AMF spores or with spores irradiated with up to 30.35 Gy gamma radiation had similar levels of root colonization. Spores irradiated with 113.03 Gy gamma radiation failed to colonize P. lanceolata roots. P content of plants inoculated with non-irradiated spores or of plants inoculated with spores irradiated with up to 30.35 Gy gamma radiation was higher than in non-mycorrhizal plants or plants inoculated with spores irradiated with 113.03 Gy gamma radiation. These results demonstrate that spores of R. irregularis MUCL 41833 are tolerant to chronic ionizing radiation at high doses.  相似文献   

20.
Spinacia oleracea L. cv. ‘Bloomsdale’, Beta vulgaris L. cv. ‘Flavescens’, Brassica juncea L. ‘OB825’, and Helianthus annuus L. cv. ‘Oranges and Lemons’ were grown for 8 weeks at a site contaminated with 137Cs at Bradwell Nuclear Power Station, UK. The site was a trench approximately 1.5 m deep, 2 m wide, and 100 m long in ‘made ground’ consisting of alluvium with traces of illites, kaolinites, and smectites. 137Cs activity concentration was measured in individual plants after 8 weeks growth and the soil in which they grew. The biomass produced and total 137Cs removed to shoots differed significantly between species but 137Cs activity concentrations and Transfer Factors (TFs) did not. B. vulgaris produced the most biomass and removed the greatest amount of 137Cs. For all plants, and within each taxon, plants growing at low soil 137Cs activity concentrations had significantly greater TFs than those growing at high soil 137Cs activity concentrations. It is concluded that selecting plant taxa suited to a particular site can be an effective way of improving phytoremediation rates, that there is much scope for adjusting harvesting intervals to 8 weeks or less without affecting TFs, and that estimates of time taken for 137Cs removal by phytoremediation should consider that TFs may increase as soil concentrations decrease. With refinements in methodology, phytoremediation has the potential to contribute significantly to decontamination of the site at Bradwell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号