首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
There is no known biological requirement for germanium (Ge), germanates, or any organogermanium compound. Ge deficiency has not been demonstrated in any animal. The estimated average dietary intake of Ge in humans is 1.5 mg/d. Ge is widely distributed in edible foods, all of which, with few exceptions, contain less than 5 ppm Ge, since higher levels are toxic to most plants. Ingestion of Ge compounds has been shown to produce toxic effects in experimental animals. In recent years inorganic germanium salts and novel organogermanium compounds, such as carboxyethyl germanium sesquioxide (Ge-132) and lactate-citrate-germanate (Ge lactate citrate) have been sold as "nutritional supplements" in some countries for their purported immunomodulatory effects or as health-producing elixirs, resulting in intakes of Ge significantly exceeding the estimated average dietary intake. Since 1982, there have been 18 reported cases of acute renal dysfunction or failure, including two deaths, linked to oral intake of Ge elixirs containing germanium dioxide (GeO2) or Ge-132. In these cases, biopsies show vacuolar degeneration in renal tubular epithelial cells, without proteinuria or hematuria, in the absence of glomerular changes. Serum creatinine levels have been well above 400 mumol/L in such patients. In 17 of 18 cases, accumulated elemental Ge intakes reportedly ranged between 16 to 328 g over a 4-36 mo period, or between 100 to 2000 times the average estimated dietary intake for human. In surviving patients, renal function improved after discontinuation of Ge supplementation. However, in no case was recovery complete. One organogermanium compound, an azaspiran organogermanium compound, 2-aza-8-germanspiro[4,5] decane-2-propamine-8,8-diethyl-N,N-dimethyl dichloride (spirogermanium), has been found to cause both neurotoxicity and pulmonary toxicity in phase I and II studies examining its chemotherapeutic potential as an antitumor drug in the treatment of various malignancies. In cancer patients given the drug spirogermanium, 40% experienced marked, yet transient neurotoxicity. Two patients suffered from pulmonary toxicity. Results of phases I and II human cancer trials for spirogermanium have not been favorable, with the exception of moderate benefits for three types of malignancies. It is recommended that patients exposed to long-term (greater than 3 mo) Ge supplementation at levels well above the estimated daily intake be medically supervised and monitored for potential renal-, pulmonary- or neurotoxicity. Further study regarding the mechanism of Ge-induced nephrotoxicity in human is warranted.  相似文献   

2.
Ginseng preparations contain high concentrations of germanium (Ge), which was reported to contribute to diuretic resistance or renal failure. However, Ge content in ginseng and the influence on renal functions remain unclear. Forty rats were randomly divided into control group, low, moderate, and high Ge ginseng-treated group and observed for 25 days. Daily urine, renal functions, and serum and urine electrolytics were measured. Ge retention in the organs and renal histological changes were also evaluated. Ge content ranged from 0.007 to 0.450 µg/g in various ginseng samples. Four groups showed no difference in the daily urine output, glomerular filtration rate, urinary electrolytes excretions, 24 h-urine protein, as well as plasma and urine urea nitrogen, creatinine, osmotic pressure, and pH values. Ge did not cause any renal pathological effects in this study. No Na and water retention was detected in the ginseng-treated groups. Ge retention in various organs was found highest in spleen, followed by the kidney, liver, lung, stomach, heart, and pancreas. The total Ge contents in various ginsengs were low, and ginseng treatment did not affect renal functions or cause renal histological changes.  相似文献   

3.
Effects of germanium and silicon on bone mineralization   总被引:1,自引:0,他引:1  
The chemical properties of Ge are similar to Si. This study investigated whether Ge can substitute for, or is antagonistic to, Si in bone formation. Sixty male weanling Sprague-Dawley rats were randomly assigned to treatment groups of 12 and 6 in a 2×4 factorially arranged experiment. The independent variables were, per gram fresh diet, Si (as sodium metasilicate) at 0 or 25 μg and Ge (as sodium germanate) at 0, 5, 30 or 60 μg. Results confirmed that Ge does not enhance Si deprivation and provided evidence that Ge apparently can replace Si in functions that influence bone composition. When Si was lacking in the diet, calcium and magnesium concentrations of the femur were decreased; this was reversed by feeding either Ge and/or Si. Similar effects were found for zinc, sodium, iron, manganese, and potassium of vertebra. There were some responses to Si deprivation that Ge could not reverse: Ge did not increase femur copper, sodium, or phosphorus or decrease molybdenum of vertebra, effects that were eveked by Si supplementation. Additionally, some findings suggested that 60 μg Ge/g diet could be a toxic intake for the rat. On the other hand, some responses induced by Ge indicate that this element may be acting physiologically other than as a substitute for Si. Germanium itself affected bone composition. Germanium supplementation decreased Si and molybdenum in the femur and increased DNA in tibia. Regardless of the amount of Si fed, animals fed 30 μg Ge/g diet had increased tibial DNA compared to animals fed 0 or 60 μg Ge; however, tibial DNA of animals fed 30 μg Ge was not statistically different from those animals fed 5 μg Ge. Thus, Ge may be of nutritional importance.  相似文献   

4.
Silicon transport and incorporation into plant tissue is important to both plant physiological function and to the influence plants have on ecosystem silica cycling. However, the mechanisms controlling this transport have only begun to be explored. In this study, we used secondary ion mass spectrometry (SIMS) to image concentrations of Si in root and shoot tissues of annual blue grass (Poa annua L.) and orchard grass (Dactylis glomerata L.) with the goal of identifying control points in the plant silica uptake pathway. In addition, we used SIMS to describe the distributions of germanium (Ge); the element used to trace Si in biogeochemical studies. Within root tissue, Si and Ge were localized in the suberized thick-walled region of endodermal cells, i.e. the proximal side of endodermal cells which is in close association to the casparian strip. In leaves, Si was present in the cell walls, but Ge was barely detectable. The selective localization of Si and Ge in the proximal side of endodermal cell walls of roots suggests transport control is exerted upon Si and Ge by the plant. The absence of Si in most root cell walls and its presence in the cell walls of leaves (in areas outside of the transpiration terminus) suggests modifications in the chemical form of Si to a form that favors Si complexation in the cell walls of leaf tissue. The low abundance of Ge in leaf tissue is consistent with previous studies that suggest preferential transport of Si relative to Ge.  相似文献   

5.
Germanium tetra(tertiary butoxide), [Ge(OtBu)4], has been prepared by the reaction of GeCl4 with KOBut in benzene. It is a monomeric crystalline solid having a distorted tetrahedral configuration, defined by the coordination of four OBut groups around germanium atom. The TG analysis showed that the compound is thermally stable and volatilizes at around 130 °C. Europium doped and un-doped germanium oxide nanoparticles were prepared based on the urea hydrolysis of Ge(OtBu)4/Eu(OOCCH3)3 in ethylene glycol medium at 150 °C followed by heating the resulting product at 750 °C. The nanoparticles were characterized by XRD, TEM and PL measurements. The europium doped nanoparticles, which were nearly monodispersed (∼30 nm), showed luminescence and the Eu3+ ions were occupying the surface of the GeO2 nanoparticles.  相似文献   

6.
The germanium(II) aryloxide complexes (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{NH3}] (1) and [Ge(OC6H3Ph2-2,6)2] (2) react with either ButI or MeI to yield the corresponding germanium(IV) compounds (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{But}{I}] (3), (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{Me}{I}] (4), [Ge(OC6H3Ph2-2,6)2(But)(I)] (5), and [Ge(OC6H3Ph2-2,6)2(Me)(I)] (6). Compound 6 reacts with 2,6-diphenylphenol to yield [Ge(OC6H3Ph2-2,6)3(Me)] (7), while 3-5 do not. The X-ray crystal structures of 3-5 and 7 were determined, and 3-5 represent the first structurally characterized germanium(IV) species having germanium bound to both oxygen and iodine.  相似文献   

7.
Slight differences in the chemical behavior of germanium (Ge) and silicon (Si) during soil weathering enable Ge/Si ratios to be used as a tracer of Si pathways. Mineral weathering and biogenic silicon cycling are the primary modifiers of Ge/Si ratios, but knowledge of the biogenic cycling component is based on relatively few studies. We conducted two sets of greenhouse experiments in order to better quantify the range and variability in Ge discrimination by plants. Graminoid species commonly found in North American grassland systems, Agropyron smithii, Schizachyrium scoparium, and Andropogon gerardii were grown under controlled hydroponic environmental conditions. Silicon leaf contents were positively correlated with solution Si and ambient temperature but not with nutrient solution pH, electrical conductivity, or species. The Ge/Si ratio incorporated into phytoliths shows a distribution coefficient [(Ge/Si)phytolith/(Ge/Si)solution] of about 0.2 and is remarkably invariant between species, photosynthetic pathway, and solution temperature. Ge seems to be discriminated against during the uptake and translocation of Si to the opal deposition sites by about a factor of five. In the second experiment, a wider range of graminoid species (Agropyron smithii, Bouteloua gracilis, Buchloe dactyloides, Oryzopsis hymenoides, Schizachyrium scoparium and Andropogon gerardii) were grown in two different soil mediums. Plant phytoliths showed a distribution factor of about 0.4 for field grown grasses, and 0.6 for potting soil grown grasses with no clear trends among the species. Evidence of the direction and degree of biological Ge discrimination during plant uptake provides a geochemical finger print for plants and improves the utility of Ge/Si ratios in studies of terrestrial weathering and links between Si cycles in terrestrial and marine systems.  相似文献   

8.
The effect of germanium on the secretion of siliceous spicules by the freshwater sponge Spongilla lacustris was investigated by exposing germinating and hatching gemmules to varying concentrations of germanium (Ge) in the presence of silicon (Si). Results were analyzed quantitatively and qualitatively and demonstrate that a [Ge]/[Si] (= molar ratio) of 1.0 completely inhibits silicon deposition. Intermediate ratios (0.5, 0.1, 0.01) which are permissive to spicule appearance result in fewer, shorter, and thinner spicules, in proportionately fewer microscleres, and in short bulbous megascleres. The size of the bulb increases with increasing [Ge]/[Si], while the length of the bulbous megascleres decreases with increasing [Ge]/[Si]. Microscleres do not demonstrate these graded responses suggesting that they are secreted in an all or none manner. Swellings produced in pond water and bulbs produced in germanium appear to decrease in size with time indicating a spreading of the accumulated silica. The effect of germanium on spicule secretion can be partially explained by its ability to uncouple the growth in length of the axial filament from the growth of the surrounding silicalemma. Under these conditions excess silicalemma is produced in which silica accumulates as bulbs in short spicules. Continuous exposure to Ge is necessary to produce this altered morphology. It is conjectured that the bulbs may be retained due to an inhibition of spreading. which in turn may be caused by the incorporation of germanium into the silica.  相似文献   

9.

Ge/Si ratios of plant phytoliths have been widely used to trace biogeochemical cycling of Si. However, until recently, information on how much of the Ge and Si transferred from soil to plants is actually stored in phytoliths was lacking. The aim of the present study is to (i) compare the uptake of Si and Ge in three grass species, (ii) localize Ge and Si stored in above-ground plant parts and (iii) evaluate the amounts of Ge and Si sequestrated in phytoliths and plant tissues. Mays (Zea mays), oat (Avena sativa) and reed canary grass (Phalaris arundinacea) were cultivated in the greenhouse on soil and sand to control element supply. Leaf phytoliths were extracted by dry ashing. Total elemental composition of leaves, phytoliths, stems and roots were measured by ICP-MS. For the localization of phytoliths and the determination of Ge and Si within leaf tissues and phytoliths scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) was used. The amounts of Si and Ge taken up by the species corresponded with biomass formation and decreased in the order Z. mays > P. arundinacea, A. sativa. Results from LA-ICP-MS revealed that Si was mostly localized in phytoliths, while Ge was disorderly distributed within the leaf tissue. In fact, from the total amounts of Ge accumulated in leaves only 10% was present in phytoliths highlighting the role of organic matter on biogeochemical cycling of Ge and the necessity for using bulk Ge/Si instead of Ge/Si in phytoliths to trace biogeochemical cycling of Si.

  相似文献   

10.
D. Werner 《Planta》1967,76(1):25-36
Summary Germanium acid, a specific inhibitor of the silicic acid metabolism in diatoms, inhibits the growth of Sinapis alba, Lemna minor, Wolffia arrhiza, Nicotiana tabacum, Tradescantia spec, Zinnia elegans, and Secale cereale when applied in the same concentrations as those used in the case of diatoms (15–75 g GeO2/ml medium). The growth of Aspergillus niger, Phycomyces blakesleanus, Escherichia coli K 12, Euglena gracilis and Pandorina morum is not influenced by these and higher concentrations of Germanium acid. By application of high concentrations of silicic acid, the growth inhibition produced by germanium acid in Lemna minor is partially reduced. Plants of Lemna minor which have been inhibited by germanium acid are essentially smaller than plants grown in a normal medium; their chlorophyll content is significantly decreased. The growth of the roots in Lemna is particularly inhibited. Isolated growing roots of Lycopersicon pimpinellifolium Mill. are inhibited by small concentrations of Ge(OH)4 (ca. 1,5×10-4 M/l). In contrast to the growth of older plants, the germination of Secale cereale and Sinapis alba is not influenced by Ge(OH)4. The effects of germanium acid are discussed in relation to the physiological role of silicic acid. The results suggest that the element silicon, in the form of silicic acid, is generally essential for the normal development of higher plants.  相似文献   

11.
A 9.14 m long sediment sequence was recovered from Lake Fryxell, Taylor Valley, southern Victoria Land, Antarctica, and investigated for its chronology and sedimentological, mineralogical, and biogeochemical changes. The basal part of the sequence is dominated by coarse clastic matter, i.e., mainly sand. The sediment composition suggests that a lake existed in Fryxell basin during the Middle Weichselian by ca. 48,000 cal. year BP. After a short period of lake-level lowstand ca. 43,000 cal. year BP, lower Taylor Valley became occupied by the proglacial Lake Washburn, which was at least partly supplied by meltwater and sediments from the Ross Ice Sheet that was advanced to the mouth of Taylor Valley. Evaporation of Lake Washburn to lower levels started during the Last Glacial Maximum at ca. 22,000 cal. year BP, long before the Ross Ice Sheet retreated significantly. Lake-level lowering was discontinuous with a series of high and low stands. From ca. 4000 cal. year BP environmental conditions were similar to those of today and lower Fryxell basin was occupied by a small lake. This lake evaporated to a saline or hypersaline pond between ca. 2500 and 1000 cal. year BP and refilled subsequently.  相似文献   

12.
Concentrations of selenium (Se), boron (B), and germanium (Ge) were determined in scalp hair of children with Kashin-Beck disease (KBD), in healthy children in KBD-disease endemic areas, and in healthy children in non-KBD areas. Mean Se, B, and Ge concentrations were low in children with KBD; in hair of healthy children in KBD areas, Se levels were normal but B and Ge levels were lower than in KBD-free areas. The hair levels of B and Ge were unaffected by selenium supplementation. It is suggested that B and Ge deficiency may be contributing factors in the etiology of KBD.  相似文献   

13.
The molecular structures of dimethylbis(trichlorosilyl)germane [Me2Ge(SiCl3)2] and trimethyl(trichlorosilyl)germane (Me3GeSiCl3) have been determined in the gas phase. Me3GeSiCl3 was found ab initio to possess C3v symmetry, with a low-lying torsional motion of the SiCl3 group relative to the GeMe3 group. The gas electron diffraction data were modelled with C3 symmetry, although little deviation from C3v symmetry was observed. Me2Ge(SiCl3)2 (C2v symmetry) was also found to have a very low-lying vibrational frequency relating to the rotation of the SiCl3 groups. This led to the gas electron diffraction data being modelled in C2 symmetry, with the observed combined deviation of the SiCl3 groups being 14° from the eclipsed structure calculated ab initio. The Ge-C bond lengths were unaffected by the addition of an extra SiCl3 group to the central germanium atom, but the Ge-Si bond lengths were observed to increase by over 1 pm.  相似文献   

14.
Specimens of Lottia gigantea were incubated in germanium enriched seawater [( Ge]/[Si] = 0.2-783) for 1-8 days. The siliceous radulae were examined histologically. No visible changes, degenerations or deformations were found in all 62 experimental radulae, although germanium is known to be a competitive inhibitor of silicon. In high concentrations, germanium was toxic to the limpets and killed them. Germanium was incorporated into the radular teeth in a distribution similar to silicon. Two suggestions are discussed for the apparent noninhibitory result.  相似文献   

15.
  • Anogeissus leiocarpa (DC.) Guill. & Perr. (Combretaceae) has important economic and cultural value in West Africa as source of wood, dye and medicine. Although this tree is in high demand by local communities, its planting remains limited due to its very low propagation via seed.
  • In this study, X‐rays were used to select filled fruits in order to characterise their morphology and seed germination responses to treatment with sulphuric acid and different incubation temperatures.
  • Morphological observations highlighted a straight orthotropous seed structure. The increase in mass detected for both intact and scarified fruits through imbibition tests, as well as morphological observations of fruits soaked in methylene blue solution, confirmed that they are water‐permeable, although acid‐scarified fruits reached significantly higher mass increment values than intact ones. Acid scarification (10 min soaking in 98% H2SO4) positively affected seed germination rate but not final germination proportions. When intact fruits where incubated at a range of temperatures, no seeds germinated at 10 °C, while maximum seed germination (ca. 80%) was reached at 20 °C. T50 values ranged from a minimum of ca. 12 days at 25 °C to a maximum of ca. 34 days at 15 and 35 °C. A theoretical base temperature for germination (Tb) of ca. 10 °C and a thermal requirement for 50% germination (S) of ca. 195 °Cd were also identified for intact fruits.
  • The results of this study revealed the seed germination characteristics driven by fruit and seed morphology of this species, which will help in its wider propagation in plantations.
  相似文献   

16.
In the presence of germanium (Ge) the needle-shaped silica spicules of the freshwater sponge Ephydatia m ulleri are very short and thin and possess bulbs with large spines. SEM-coupled X-ray analyses confirm the incorporation of Ge into the silica. A small number of bulbs are susceptible to erosion by HNO3 and hypochlorite and although the chemical basis of such erosion is presently unknown it suggests the presence of an organic matrix within the bulbs and/or an incomplete polymerization of the silica. Addition of Ge to control media in which silicification is newly initiated increases the incidence of erosion and results in centrally located eroded areas of the silica and discontinuities in its deposition. Removal of Ge from such newly forming structures results in a partial recovery of normal morphology (spine development and thickening of the silica) but only in the central region surrounding the bulbs. Both results establish the presence of a central, active region for silicification and further support the view that there is a distal spreading, away from this center, of transported forms of silica. Secondary centers may also be present. The newly assembled organic core of control structures is associated with tubular elements possibly derived from the surrounding membrane. In such newly silicifying structures the spicule tips contain oriented material in the form of "rays." Both of these new observations increase the likelihood of the presence of an organic matrix within the silica.  相似文献   

17.
The crystalline compounds (Hbipy)2[Ge(C2O4)3] (1) and (Hphen)2[Ge(C2O4)3] · 2(H2O) (2) [Hbipy+ is the 2,2′-bipyridinium cation (C10H9N2), and Hphen+ is the 1,10′-phenathrolinium cation (C12H9N2)] were isolated from mild hydrothermal syntheses and their structures were elucidated from single-crystal X-ray diffraction. The two compounds were further characterised by vibrational spectroscopy (FT-IR and FT-Raman), thermogravimetric analysis (TGA) and CHN elemental composition. Compounds 1 and 2 comprise the tris(oxalato-O,O′)germanate dianion complex, [Ge(C2O4)3]2−, which co-crystallises with Hbipy+ (in 1), or Hphen+ and water molecules (in 2). In 1, the germanium oxalate anionic complex, [Ge(C2O4)3]2−, and the Hbipy+ organic residues interact mutually via N-H?O hydrogen bonding interactions, leading to supramolecular discrete hydrogen-bonded units which are further interconnected via π-π stacking. Compound 2, on the other hand, exhibits a more complex hydrogen bonding network due to the presence of the water molecules of crystallisation which, along with π-π stacking between neighbouring Hphen+ residues, mediate the crystal packing.  相似文献   

18.
Summary The toxicity of germanium dioxide (GeO2) to 21 bacterial and 13 yeast strains was investigated in liquid broth medium to obtain information on strains tolerant to high (1 to 2 mg/ml) GeO2 concentrations.Arthrobacter sp. NRC 32005,enterobacter aerogenes NRC 2926,Klebsiella aerogenes NCTC 418 andPseudomonas putida NRC 5019 were tolerant to 1 mg/ml GeO2.Bacillus sp. RC607 was able to grow in the presence of 2 mg/ml GeO2 at pH 10 in broth culture. The yeastsCandida guilliermondii, Candida shehatae andPachysolen tannophilus were the most sensitive to GeO2 as evidenced by their diminished growth rates at a GeO2 concentration as low as 0.1 mg/ml. None of the yeast strains tested exhibited growth in the presence of 1 mg/ml GeO2. The high pH of the medium containing germanium may be partially responsible for the growth inhibition of the yeast cultures. Select bacterial cultures previously exposed to 1 mg/ml GeO2 could tolerate and grow better at 2 mg/ml GeO2, suggesting the existence of very efficient adaptive mechanisms. The pH of the medium could modulate GeO2 tolerance and this effect was found to be strain-dependent.  相似文献   

19.
The effects of trace elements of gallium (Ga), germanium (Ge), and strontium (Sr) on ovariectomized (OVX) osteopenic rats were studied in this paper. The urine calcium content, serum calcium, and phosphorus contents, bone mineral content, mineral dissolution, and mechanical strength of the osteopenic rats were analyzed respectively. After the rats were fed with Ga, Ge, and Sr diet for 8 weeks, respectively, the urine calcium content decreased (P?<?0.01). Plasma calcium and phosphate concentrations decreased in the order of OVX group?>?Ge group?>?Sr group?>?Ga group?>?Sham group. Mineral content increased in the order of OVX group?<?Ge group?<?Sr group?<?Ga group?<?Sham group. A dramatic decrease in calcium solubility was found both in the gallium and strontium treated animals (P?<?0.05). However, the same result did not occur in germanium treated groups. The data provide an important proof of concept that gallium and strontium might be a new potential therapy for the management of postmenopausal osteoporosis in humans.  相似文献   

20.
Summary The influence of pH, temperature and catechol concentration on germanium (Ge) accumulation byPseudomonas stutzeri AG259 was investigated. Increasing the incubation temperature or pH of the culture medium markedly enhanced Ge accumulation. High amounts of Ge were accumulated at pH 11 and at 50°C, conditions under whichP. stutzeri cells were non-viable. Ge accumulation was unaffected by treatment with toluene or 2,4-dinitrophenol. These results indicate that Ge was accumulated by an energy-independent process. Ge accumulation increased as the catechol concentration increased. The use of autoclaved catechol solutions consistently increased the amount of Ge accumulated at all concentrations of catechol tested. It is possible that Ge enters the bacterial cells as a Ge-catechol complex and this uptake is enhanced by autoclaved catechol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号