首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Translation initiation factor IF3 is an essential bacterial protein, consisting of two domains (IF3C and IF3N) separated by a linker, which interferes with ribosomal subunit association, promotes codon-anticodon interaction in the P site, and ensures translation initiation fidelity. Using time-resolved chemical probing, we followed the dynamic binding path of IF3 on the 30S subunit and its release upon 30S-50S association. During binding, IF3 first contacts the platform (near G700) of the 30S subunit with the C domain and then the P-decoding region (near A790) with its N domain. At equilibrium, attained within less than a second, both sites are protected, but before reaching binding equilibrium, IF3 causes additional transient perturbations of both the platform edge and the solvent side of the subunit. Upon 30S-50S association, IF3 dissociates concomitantly with the establishment of the 30S-50S bridges, following the reverse path of its binding with the IF3N-A790 interaction being lost before the IF3C-G700 interaction.  相似文献   

2.
Bacterial translation initiation factor IF2 is a GTP-binding protein that catalyzes binding of initiator fMet-tRNA in the ribosomal P site. The topographical localization of IF2 on the ribosomal subunits, a prerequisite for understanding the mechanism of initiation complex formation, has remained elusive. Here, we present a model for the positioning of IF2 in the 70S initiation complex as determined by cleavage of rRNA by the chemical nucleases Cu(II):1,10-orthophenanthroline and Fe(II):EDTA tethered to cysteine residues introduced into IF2. Two specific amino acids in the GII domain of IF2 are in proximity to helices H3, H4, H17, and H18 of 16S rRNA. Furthermore, the junction of the C-1 and C-2 domains is in proximity to H89 and the thiostrepton region of 23S rRNA. The docking is further constrained by the requisite proximity of the C-2 domain with P-site-bound tRNA and by the conserved GI domain of the IF2 with the large subunit's factor-binding center. Comparison of our present findings with previous data further suggests that the IF2 orientation on the 30S subunit changes during the transition from the 30S to 70S initiation complex.  相似文献   

3.
Bacterial translation initiation factor 3 (IF3) is involved in the fidelity of translation initiation at several levels, including start-codon discrimination, mRNA translation, and initiator-tRNA selection. The IF3 C-terminal domain (CTD) is required for binding to the 30S ribosomal subunit. N-terminal domain (NTD) function is less certain, but likely contributes to initiation fidelity. Point mutations in either domain can decrease initiation fidelity, but C-terminal domain mutations may be indirect. Here, the Y75N substitution mutation in the NTD is examined in vitro and in vivo. IF3Y75N protein binds 30S subunits normally, but is defective in start-codon discrimination, inhibition of initiation on leaderless mRNA, and initiator-tRNA selection, thereby establishing a direct role for the IF3 NTD in these initiation processes. A model illustrating how IF3 modulates an inherent function of the 30S subunit is discussed.  相似文献   

4.
Translational initiation factor 3 (IF3) is an RNA helix destabilizing protein which interacts with strongly conserved sequences in 16S rRNA, one at the 3' terminus and one in the central domain. It was therefore of interest to identify particular residues whose exposure changes upon IF3 binding. Chemical and enzymatic probing of central domain nucleotides of 16S rRNA in 30S ribosomal subunits was carried out in the presence and absence of IF3. Bases were probed with dimethyl sulfate (DMS), at A(N-1), C(N-3), and G(N-7), and with N-cyclohexyl-N'-[2-(N-methyl-4-morpholinio)ethyl] carbodiimide p-toluenesulfonate (CMCT), at G(N-1) and U(N-3). RNase T1 and nuclease S1 were used to probe unpaired nucleotides, and RNase V1 was used to monitor base-paired or stacked nucleotides. 30S subunits in physiological buffers were probed in the presence and absence of IF3. The sites of cleavage and modification were detected by primer extension. IF3 binding to 30S subunits was found to reduce the chemical reactivity and enzymatic accessibility of some sites and to enhance attack at other sites in the conserved central domain of 16S rRNA, residues 690-850. IF3 decreased CMCT attack at U701 and U793 and V1 attack at G722, G737, and C764; IF3 enhanced DMS attack at A814 and V1 attack at U697, G833, G847, and G849. Many of these central domain sites are strongly conserved and with the conserved 3'-terminal site define a binding domain for IF3 which correlates with a predicted cleft in two independent models of the 30S ribosomal subunit.  相似文献   

5.
Addition of initiation factor IF3 to solutions of E. coli ribosomes dramatically alters their behavior in pressure-jump relaxation kinetic experiments in which 90 degrees light-scattering is used to monitor the macromolecular reaction. The effect of IF3 on relaxation processes attributed to "tight" couples is strongly dependent on the Mg2+ concentration. At 2.5 mM Mg2+, addition of 1 molar equivalent of IF3 decreases the relaxation amplitude by a factor of 3 relative to ribosome solutions without IF3. However, at 5.0 mM Mg2+, addition of 1 molar equivalent of IF3 produces a marked increase in the relaxation amplitude, by a factor of 2-8 fold relative to ribosomes in the absence of IF3. IF3 has no effect on the relaxation process attributed to "loose" couples at 10 mM Mg2+. While we are unable to propose a precise mechanism for IF3 action with the data on hand, our results require that the 30S . IF3 complex either reacts with the 50S subunit, forming a 70S . IF3 intermediate, or acts as a pool of reactive 30S subunit. Further kinetic evidence is required to distinguish between these possible pathways.  相似文献   

6.
Initiation factor 3 (IF3) acts to switch the decoding preference of the small ribosomal subunit from elongator to initiator tRNA. The effects of IF3 on the 30 S ribosomal subunit and on the 30 S.mRNA. tRNA(f)(Met) complex were determined by UV-induced RNA crosslinking. Three intramolecular crosslinks in the 16 S rRNA (of the 14 that were monitored by gel electrophoresis) are affected by IF3. These are the crosslinks between C1402 and C1501 within the decoding region, between C967xC1400 joining the end loop of a helix of 16 S rRNA domain III and the decoding region, and between U793 and G1517 joining the 790 end loop of 16 S rRNA domain II and the end loop of the terminal helix. These changes occur even in the 30 S.IF3 complex, indicating they are not mediated through tRNA(f)(Met) or mRNA. UV-induced crosslinks occur between 16 S rRNA position C1400 and tRNA(f)(Met) position U34, in tRNA(f)(Met) the nucleotide adjacent to the 5' anticodon nucleotide, and between 16 S rRNA position C1397 and the mRNA at positions +9 and +10 (where A of the initiator AUG codon is +1). The presence of IF3 reduces both of these crosslinks by twofold and fourfold, respectively. The binding site for IF3 involves the 790 region, some other parts of the 16 S rRNA domain II and the terminal stem/loop region. These are located in the front bottom part of the platform structure in the 30 S subunit, a short distance from the decoding region. The changes that occur in the decoding region, even in the absence of mRNA and tRNA, may be induced by IF3 from a short distance or could be caused by the second IF3 structural domain.  相似文献   

7.
The functional properties of the two natural forms of Escherichia coli translation initiation factor IF2 (IF2alpha and IF2beta) and of an N-terminal deletion mutant of the factor (IF2DeltaN) lacking the first 294 residues, corresponding to the entire N-terminal domain, were analysed comparatively. The results revealed that IF2alpha and IF2beta display almost indistinguishable properties, whereas IF2DeltaN, although fully active in all steps of the translation initiation pathway, displays functional activities having properties and requirements distinctly different from those of the intact molecule. Indeed, binding of IF2DeltaN to the 30 S subunit, IF2DeltaN-dependent stimulation of fMet-tRNA binding to the ribosome and of initiation dipeptide formation strongly depend upon the presence of IF1 and GTP, unlike with IF2alpha and IF2beta. The present results indicate that, using two separate active sites, IF2 establishes two interactions with the 30 S ribosomal subunit which have different properties and functions. The first site, located in the N domain of IF2, is responsible for a high-affinity interaction which "anchors" the factor to the subunit while the second site, mainly located in the beta-barrel module homologous to domain II of EF-G and EF-Tu, is responsible for the functional ("core") interaction of IF2 leading to the decoding of fMet-tRNA in the 30 S subunit P-site. The first interaction is functionally dispensable, sensitive to ionic-strength variations and essentially insensitive to the nature of the guanosine nucleotide ligand and to the presence of IF1, unlike the second interaction which strongly depends upon the presence of IF1 and GTP.  相似文献   

8.
Hydroxyl radical footprinting and directed probing from Fe(II)-derivatized IF3 have been used to map the interaction of IF3 relative to 16S rRNA and tRNA(Met)(f) in the 30S ribosomal subunit. Our results place the two domains of IF3 on opposite sides of the initiator tRNA, with the C domain at the platform interface and the N domain at the E site. The C domain coincides with the location of helix 69 of 23S rRNA, explaining the ability of IF3 to block subunit association. The N domain neighbors proteins S7 and S11 and may interfere with E site tRNA binding. Our model suggests that IF3 influences initiator tRNA selection indirectly.  相似文献   

9.
Addition of initiation factor IF3 to solutions of E.coli ribosomes dramatically alters their behavior in pressure-jump relaxation kinetic experiments in which 90 degrees light-scattering is used to monitor the macromolecular reaction. The effect of IF3 on relaxation processes attributed to "tight" couples is strongly dependent on the Mg2+ concentration. At 2.5 mM Mg2+, addition of 1 molar equivalent of IF3 decreases the relaxation amplitude by a factor of 3 relative to ribosome solutions without IF3. However, at 5.0 mM Mg2+, addition of 1 molar equivalent of IF3 produces a marked increase in the relaxation amplitude, by a factor of 2-8 fold relative to ribosomes in the absence of IF3. IF3 has no effect on the relaxation process attributed to "loose" couples at 10 mM Mg2+. While we are unable to propose a precise mechanism for IF3 action with the data on hand, our results require that the 30S . IF3 complex either reacts with the 50S subunit, forming a 70S . IF3 intermediate, or acts as a pool of reactive 30S subunit. Further kinetic evidence is required to distinguish between these possible pathways.  相似文献   

10.
M Laughrea  J Tam 《Biochemistry》1991,30(48):11412-11420
We have studied the effect of the binding of ribosomal protein S1 and initiation factor IF3 on the accessibility of nucleotide residues 584-1506 in the small subunit of the Escherichia coli ribosome. Protein S1 strongly decreases RNase V1 attack at G1164, in hairpin 40 of the 3' major domain, and weakly decreases DMS attack at C1302, in the central loop of the 3' major domain, and at A1503, in the 3' minor domain. It also weakly increases the DMS reactivity of A1004, in the 3' major domain, and of A901, in the central domain. Factor IF3 strongly decreases RNase V1 attack (but not dimethyl sulfate attack) at A1408, in the decoding site, and weakly protects A1500, in the 3' minor domain and near the colicin E3 cleavage site. Neomycin does not interfere with this effect of IF3, but IF3 interferes with the protective effect of neomycin against dimethyl sulfate attack at A1408.  相似文献   

11.
F H Zucker  J W Hershey 《Biochemistry》1986,25(12):3682-3690
The interaction of initiation factor IF1 with 30S ribosomal subunits was measured quantitatively by fluorescence polarization. Purified IF1 was treated with 2-iminothiolane and N-[[(iodoacetyl)-amino]ethyl]-5-naphthylamine-1-sulfonic acid in order to prepare a covalent fluorescent derivative without eliminating positive charges on the protein required for biochemical activity. The fluorescent-labeled IF1 binds to 30S subunits and promotes the formation of N-formylmethionyl-tRNA complexes with 70S ribosomes. Analyses of mixtures of fluorescent-labeled IF1 and 30S ribosomal subunits with an SLM 4800 spectrofluorometer showed little change in fluorescence spectra or lifetimes upon binding, but a difference in polarization between free and bound forms is measurable. Bound to free ratios were calculated from polarization data and used in Scatchard plots to determine equilibrium binding constants and number of binding sites per ribosomal subunit. Competition between derivatized and nonderivatized forms of IF1 was quantified, and association constants for the native factor were determined: (5 +/- 1) X 10(5) M-1 with IF1 alone; (3.6 +/- 0.4) X 10(7) M-1 with IF3; (1.1 +/- 0.2) X 10(8) M-1 with IF2; (2.5 +/- 0.5) X 10(8) M-1 with both IF2 and IF3. In all cases, 0.9-1.1 binding sites per 30S subunit were detected. Divalent cations have little effect on affinities, whereas increasing monovalent cations inhibit binding. On the basis of the association constants, we predict that greater than 90% of native 30S subunits are complexed with all three initiation factors in intact bacterial cells.  相似文献   

12.
IF3C is the C-terminal domain of Escherichia coli translation initiation factor 3 (IF3) and is responsible for all functions of this translation initiation factor but for its ribosomal recycling. To map the number and nature of the active sites of IF3 and to identify the essential Arg residue(s) chemically modified with 2,3-butanedione, the eight arginine residues of IF3C were substituted by Lys, His, Ser and Leu, generating 32 variants that were tested in vitro for all known IF3 activities. The IF3-30S subunit interaction was inhibited strongly by substitutions of Arg99, Arg112, Arg116, Arg147 and Arg168, the positive charges being important at positions 116 and 147. The 70S ribosome dissociation was affected by mutations of Arg112, Arg147 and, to a lesser extent, of Arg99 and Arg116. Pseudo-initiation complex dissociation was impaired by substitution of Arg99 and Arg112 (whose positive charges are important) and, to a lesser extent, of Arg116, Arg129, Arg133 and Arg147, while the dissociation of non-canonical 30S initiation complexes was preserved at wild-type levels in all 32 mutants. Stimulation of mRNA translation was reduced by mutations of Arg116, Arg129 and, to a lesser extent, of Arg99, Arg112 and Arg131 whereas inhibition of non-canonical mRNA translation was affected by substitutions of Arg99, Arg112, Arg168 and, to a lesser extent, Arg116, Arg129 and Arg131. Finally, repositioning the mRNA on the 30S subunit was affected weakly by mutations of Arg133, Arg131, Arg168, Arg147 and Arg129. Overall, the results define two active surfaces in IF3C, and indicate that the different functions of IF3 rely on different molecular mechanisms involving separate active sites.  相似文献   

13.
This work describes the isolation of mutations in infC, the structural gene for IF3, using different genetic screens. Among 21 mutants characterised, seven were shown to produce stable variant IF3 proteins unable to fully complement a strain carrying a chromosomal deletion of the infC gene. The mutants were also shown to be unable to normally discriminate against several non-canonical initiation codons such as AUU and ACG. The two mutants with the strongest complementation or discrimination defects carry changes in the C-terminal domain of IF3, which is responsible for the binding of the factor to the 30 S ribosomal subunit. We show that the first mutant has an expected decreased but the second an unexpected increased capacity to bind the 30 S subunit. The in vivo defects of the second mutant are explained by its capacity to bind unspecifically to other targets, as shown by its increased affinity for the 50 S subunit, which is normally not recognised by the factor. Interestingly, this mutant corresponds to a change of an acidic residue that might play a negative discriminatory role in preventing interactions with non-cognate RNAs, as has been reported for acidic residues of aminoacyl-tRNA synthetases shown to be involved in tRNA recognition.  相似文献   

14.
IF3 has a fidelity function in the initiation of translation, inducing the dissociation of fMet-tRNA(fMet) from the 30 S initiation complexes (30SIC) containing a non-canonical initiation triplet (e.g. AUU) in place of a canonical initiation triplet (e.g., AUG). IF2 has a complementary role, selectively promoting initiator tRNA binding to the ribosome. Here, we used parallel rapid kinetics measurements of GTP hydrolysis, Pi release, light-scattering, and changes in intensities of fluorophore-labeled IF2 and fMet-tRNA(fMet) to determine the effects on both 30SIC formation and 30SIC conversion to 70 S initiation complexes (70SIC) of (a) substituting AUG with AUU, and/or (b) omitting IF3, and/or (c) replacing GTP with the non-hydrolyzable analog GDPCP. We demonstrate that the presence or absence of IF3 has, at most, minor effects on the rate of 30SIC formation using either AUG or AUU as the initiation codon, and conclude that the high affinity of IF2 for both 30 S subunit and initiator tRNA overrides any perturbation of the codon-anticodon interaction resulting from AUU for AUG substitution. In contrast, replacement of AUG by AUU leads to a dramatic reduction in the rate of 70SIC formation from 30SIC upon addition of 50 S subunits. Interpreting our results in the framework of a quantitative kinetic scheme leads to the conclusion that, within the overall process of 70SIC formation, the step most affected by substituting AUU for AUG involves the conversion of an initially labile 70 S ribosome into a more stable complex. In the absence of IF3, the difference between AUG and AUU largely disappears, with each initiation codon affording rapid 70SIC formation, leading to the hypothesis that it is the rate of IF3 dissociation from the 70 S ribosome during IC70S formation that is critical to its fidelity function.  相似文献   

15.
Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNA(fMet) requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNA(fMet). Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNA(fMet), IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNA(fMet), which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNA(fMet) induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation.  相似文献   

16.
Initiation factor IF3 is an essential protein that enhances the fidelity and speed of bacterial mRNA translation initiation. Here, we describe the dynamic interplay between IF3 domains and their alternative binding sites using pre-steady state kinetics combined with molecular modelling of available structures of initiation complexes. Our results show that IF3 accommodates its domains at velocities ranging over two orders of magnitude, responding to the binding of each 30S ligand. IF1 and IF2 promote IF3 compaction and the movement of the C-terminal domain (IF3C) towards the P site. Concomitantly, the N-terminal domain (IF3N) creates a pocket ready to accept the initiator tRNA. Selection of the initiator tRNA is accompanied by a transient accommodation of IF3N towards the 30S platform. Decoding of the mRNA start codon displaces IF3C away from the P site and rate limits translation initiation. 70S initiation complex formation brings IF3 domains in close proximity to each other prior to dissociation and recycling of the factor for a new round of translation initiation. Altogether, our results describe the kinetic spectrum of IF3 movements and highlight functional transitions of the factor that ensure accurate mRNA translation initiation.  相似文献   

17.
Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet‐tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2‐30S interaction, is positioned between the GTP‐binding G2 and the fMet‐tRNA binding C‐terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two β‐sheets with each four anti‐parallel strands, followed by a C‐terminal α‐helix. In line with its role as linker between G3 and subdomain C1, this helix has no well‐defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB‐fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA‐binding modules such as IF2‐C2, IF1 and subdomains II of elongation factors EF‐Tu and EF‐G. Structural comparisons have resulted in a model that describes the interaction between IF2‐G3 and the 30S ribosomal subunit.  相似文献   

18.
Translation initiation factor IF3 is required for peptide chain initiation in Escherichia coli. IF3 binds directly to 30S ribosomal subunits ensuring a constant supply of free 30S subunits for initiation complex formation, participates in the kinetic selection of the correct initiator region of mRNA, and destabilizes initiation complexes containing noninitiator tRNAs. The roles that tyrosine 107 and lysine 110 play in IF3 function were examined by site-directed mutagenesis. Tyrosine 107 was changed to either phenylalanine (Y107F) or leucine (Y107L), and lysine 110 was converted to either arginine (K110R) or leucine (K110L). These single amino acid changes resulted in a reduced affinity of IF3 for 30S subunits. Association equilibrium constants (M-1) for 30S subunit binding were as follows: wild-type, 7.8 x 10(7); Y107F, 4.1 x 10(7); Y107L, 1 x 10(7); K110R, 5.1 x 10(6); K110L, < 1 x 10(2). The mutant IF3s were similarly impaired in their abilities to specifically select initiation complexes containing tRNA(fMet). Toeprint analysis indicated that 5-fold more Y107L or K110R protein was required for proper initiator tRNA selection. K110L protein was unable to mediate this selection even at concentrations up to 10-fold higher than wild type. The results indicate that tyrosine 107 and lysine 110 are critical components of the ribosome binding domain of IF3 and, furthermore, that dissociation of complexes containing noninitiator tRNAs requires prior binding of IF3 to the ribosomes.  相似文献   

19.
Mammalian mitochondrial initiation factor 3 (IF3mt) has a central region with homology to bacterial IF3. This homology region is preceded by an N-terminal extension and followed by a C-terminal extension. The role of these extensions on the binding of IF3mt to mitochondrial small ribosomal subunits (28S) was studied using derivatives in which the extensions had been deleted. The Kd for the binding of IF3mt to 28S subunits is ~30 nM. Removal of either the N- or C-terminal extension has almost no effect on this value. IF3mt has very weak interactions with the large subunit of the mitochondrial ribosome (39S) (Kd = 1.5 μM). However, deletion of the extensions results in derivatives with significant affinity for 39S subunits (Kd = 0.120.25 μM). IF3mt does not bind 55S monosomes, while the deletion derivative binds slightly to these particles. IF3mt is very effective in dissociating 55S ribosomes. Removal of the N-terminal extension has little effect on this activity. However, removal of the C-terminal extension leads to a complex dissociation pattern due to the high affinity of this derivative for 39S subunits. These data suggest that the extensions have evolved to ensure the proper dissociation of IF3mt from the 28S subunits upon 39S subunit joining.  相似文献   

20.
Initiation of translation involves recognition of the start codon by the initiator tRNA in the 30S subunit. To investigate the role of ribosomal RNA (rRNA) in this process, we isolated a number of 16S rRNA mutations that increase translation from the non-canonical start codon AUC. These mutations cluster to distinct regions that overlap remarkably well with previously identified class III protection sites and implicate both IF1 and IF3 in start codon selection. Two mutations map to the 790 loop and presumably act by inhibiting IF3 binding. Another cluster of mutations surrounds the conserved A1413∘G1487 base pair of helix 44 in a region known to be distorted by IF1 and IF3. Site-directed mutagenesis in this region confirmed that this factor-induced rearrangement of helix 44 helps regulate initiation fidelity. A third cluster of mutations maps to the neck of the 30S subunit, suggesting that the dynamics of the head domain influences translation initiation. In addition to identifying mutations that decrease fidelity, we found that many P-site mutations increase the stringency of start codon selection. These data provide evidence that the interaction between the initiator tRNA and the 30S P site is tuned to balance efficiency and accuracy during initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号