首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinase D (PKD) has been implicated in many aspects of tumorigenesis and progression, and is an emerging molecular target for the development of anticancer therapy. Despite recent advancement in the development of potent and selective PKD small molecule inhibitors, the availability of in vivo active PKD inhibitors remains sparse. In this study, we describe the discovery of a novel PKD small molecule inhibitor, SD-208, from a targeted kinase inhibitor library screen, and the synthesis of a series of analogs to probe the structure-activity relationship (SAR) vs. PKD1. SD-208 displayed a narrow SAR profile, was an ATP-competitive pan-PKD inhibitor with low nanomolar potency and was cell active. Targeted inhibition of PKD by SD-208 resulted in potent inhibition of cell proliferation, an effect that could be reversed by overexpressed PKD1 or PKD3. SD-208 also blocked prostate cancer cell survival and invasion, and arrested cells in the G2/M phase of the cell cycle. Mechanistically, SD-208-induced G2/M arrest was accompanied by an increase in levels of p21 in DU145 and PC3 cells as well as elevated phosphorylation of Cdc2 and Cdc25C in DU145 cells. Most importantly, SD-208 given orally for 24 days significantly abrogated the growth of PC3 subcutaneous tumor xenografts in nude mice, which was accompanied by reduced proliferation and increased apoptosis and decreased expression of PKD biomarkers including survivin and Bcl-xL. Our study has identified SD-208 as a novel efficacious PKD small molecule inhibitor, demonstrating the therapeutic potential of targeted inhibition of PKD for prostate cancer treatment.  相似文献   

2.
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt) is thought to serve as an oncogenic signaling pathway which can be activated by Ras. The role of PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells is currently not clear. Here we demonstrate that inducible expression of oncogenic Ha-Ras results in activation of PKB/Akt in rat intestinal epithelial cells (RIE-iHa-Ras), which was blocked by treatment with inhibitors of PI3K activity. The PI3K inhibitor, LY-294002, partially reversed the morphological transformation induced by Ha-Ras and resulted in a modest stimulation of apoptosis. The most pronounced phenotypic alteration following inhibition of PI3K was induction of G(1) phase cell cycle arrest. LY-294002 blocked the Ha-Ras-induced expression of cyclin D1, cyclin-dependent kinase (CDK) 2, and increased the levels of p27(kip). Both LY-294002 and wortmannin significantly reduced anchorage-independent growth of RIE-iHa-Ras cells. Forced expression of both the constitutively active forms of Raf (DeltaRaf-22W or Raf BXB) and Akt (Akt-myr) resulted in transformation of RIE cells that was not achieved by transfection with either the Raf mutant construct or Akt-myr alone. These findings delineate an important role for PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells.  相似文献   

3.
Activation of G(q) protein-coupled receptors can either stimulate or inhibit cell growth. Previously, these opposite effects were explained by differences in the cell models. Here we show that activation of m3 muscarinic acetylcholine receptors ectopically expressed in NIH3T3 cells can cause stimulation and inhibition of growth in the same cell. A clonal cell line was selected from cells that formed foci agonist dependently (3T3/m3 cells). In quiescent 3T3/m3 cells, carbachol stimulated DNA synthesis. In contrast, when 3T3/m3 cells were growing, either due to the presence of serum or after transformation with oncogenic v-src, carbachol inhibited growth. This inhibition was not due to reduction of extracellular signal-regulated kinase activity because carbachol induced extracellular signal-regulated kinase phosphorylation in both quiescent and growing 3T3/m3 cells. Investigating the cell cycle mechanisms involved in growth inhibition, we found that carbachol treatment decreased cyclin D1 levels, increased p21(cip1) expression, and led to hypophosphorylation of the retinoblastoma gene product (Rb). Proteasome inhibitors blocked the carbachol-induced degradation of cyclin D1. Effects on p21(cip1) were blocked by a protein kinase C inhibitor. Thus, m3 muscarinic acetylcholine receptors couple to both growth-stimulatory and -inhibitory signaling pathways in NIH3T3 cells, and the observed effects of receptor activation depend on the context of cellular growth.  相似文献   

4.
Staurosporine, a microbial-derived protein kinase inhibitor, reversibly blocked non-synchronized, replicating cultures of the human lung epithelial cell line EKVX in the G1 phase of cell cycle and inhibited DNA synthesis and cell replication. The mechanism of this cell-cycle arrest in EKVX cells by staurosporine was likely due to inhibition of protein kinase C (PKC) because: 1) dose-dependent inhibition of DNA synthesis occurred at levels of staurosporine that inhibit phosphorylation of PKC substrate, 2) inhibition of DNA synthesis was also seen after treatment with another PKC inhibitor H7, but not by the chemically similar HA1004, which has a relative inhibitory specificity for cAMP-dependent protein kinase, and 3) the DNA synthesis was not inhibited by specific tyrosine kinase inhibitors Genistein and Lavendustin A at concentrations that inhibit tyrosine kinase activity. Removal of staurosporine from cell culture media resulted in a rebound in PKC activity and synchronized DNA synthesis in EKVX cultures. The reversibility of the inhibition was noted even after 5 days of treatment with staurosporine, and DNA synthesis remained synchronized for at least two rounds of cell replication after removal of staurosporine. Flow cytometric analysis confirmed that more than 90% of the cell population was blocked in the G1 phase after cells were treated with staurosporine for 24 h. Agents such as staurosporine may be useful for synchronizing cell populations to study cell-cycle specific biochemical events important for the regulation of cell replication in the EKVX cell line.  相似文献   

5.
6.
The effects of activating endogenous protein kinase C (PKC) on cell proliferation and the cell cycle were investigated by treating the breast cancer cell line SKBR-3 with phorbol 12-myristate 13 acetate (PMA). This inhibited cell growth in a concentration-dependent manner, causing a marked arrest of cells in G(1). Pre-treatment with GF109203X completely blocked the antiproliferative effect of PMA, and pre-treatment with the PKCdelta inhibitor rottlerin partially blocked it. Infecting SKBR-3 cells with an adenovirus vector containing wild-type PKCdelta, WTPKCdeltaAdV, had similar effects on PMA. Infecting the cells with a dominant-negative PKCdeltaAdV construct blocked the growth inhibition induced by PMA. Downstream of PKC, PMA treatment inhibited extracellular signal-regulated kinase mitogen-activated protein kinase phosphorylation, up-regulated c-jun NH(2)-terminal kinase phosphorylation, and inhibited retinoblastoma (Rb) phosphorylation. These results strongly implicated PKC (mainly PKCdelta) in the G(1) arrest induced by PMA and suggested PKC as a target for breast cancer treatment.  相似文献   

7.
Oxidative stress has been implicated in the pathogenesis of inflammatory diseases of airways. Here we show that oxidative stress causes ligand-independent activation of epidermal growth factor receptors (EGFR) and subsequent activation of mitogen-activated protein kinase kinase (MEK)-p44/42 mitogen-activated protein kinase (p44/42mapk), resulting in mucin synthesis in NCI-H292 cells. Exogenous hydrogen peroxide and neutrophils activated by IL-8, FMLP, or TNF-alpha increased EGFR tyrosine phosphorylation and subsequent activation of p44/42mapk and up-regulated the expression of MUC5AC at both mRNA and protein levels in NCI-H292 cells. These effects were blocked by selective EGFR tyrosine kinase inhibitors (AG1478, BIBX1522) and by a selective MEK inhibitor (PD98059), whereas a selective platelet-derived growth factor receptor tyrosine kinase inhibitor (AG1295), a selective p38 MAPK inhibitor (SB203580), and a negative compound of tyrosine kinase inhibitors (A1) were without effect. Neutrophil supernatant-induced EGFR tyrosine phosphorylation, activation of p44/42mapk, and MUC5AC synthesis were inhibited by antioxidants (N-acetyl-cysteine, DMSO, dimethyl thiourea, or superoxide dismutase); neutralizing Abs to EGFR ligands (EGF and TGF-alpha) were without effect, and no TGF-alpha protein was found in the neutrophil supernatant. In contrast, the EGFR ligand, TGF-alpha, increased EGFR tyrosine phosphorylation, activation of p44/42mapk, and subsequent MUC5AC synthesis, but these effects were not inhibited by antioxidants. These results implicate oxidative stress in stimulating mucin synthesis in airways and provide new therapeutic approaches in airway hypersecretory diseases.  相似文献   

8.
In the present study, we investigated the selective role of protein kinase C (PKC) isoforms on neurite outgrowth of the GT1 hypothalamic neurons using several PKC isoform-selective inhibitors and transfection-based expression of enhanced green fluorescence protein (EGFP)-fused PKC isoforms. 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced neurite outgrowth and growth cone formation, effects that were blocked by GF 109203X (a PKC inhibitor), safingolTM(a PKCalpha-selective inhibitor), but not by rottlerinTM (a PKCdelta-selective inhibitor), indicating that PKCalpha may be selectively involved in neurite outgrowth and cytoskeletal changes of filamentous actin and beta-tubulin. To define the differential localization of PKC isoforms, EGFP-tagged PKCalpha, PKCgamma, and PKCdelta were transfected into GT1 neuronal cells. TPA treatment induced relocalization of PKCalpha-EGFP to growth cones and cell-cell adhesion sites, PKCgamma-EGFP to the nucleus, and PKCdelta-EGFP to the membrane ruffle, respectively. An EGFP chimera of the catalytic domain of PKCalpha (PKCalpha-Cat-EGFP), the expression of which was inducible by doxycycline, was employed to directly ascertain the effect of PKCalpha enzymatic activity on neurite outgrowth of GT1 cells. Transient transfection of PKCalpha-Cat-EGFP alone increased the neurite-outgrowth and doxycycline treatment further augmented the number of neurite-containing cells. We also examined the involvement of the extracellular signal-regulated kinase (ERK) MAP kinase in TPA-induced neurite outgrowth. TPA treatment increased phosphorylated ERK MAP kinase, but not p38 MAP kinase. Specific inhibition of PKCalpha with safingol blocked the phosphorylation of ERK induced by TPA. More importantly, both neurite outgrowth and phosphorylation of ERK by TPA were blocked by PD 098059, a specific inhibitor of MEK (MAP kinase/ERK kinase-1), but not by SB203580, a specific inhibitor of p38 MAP kinase. These results demonstrate that PKCalpha isoform-specific activation is involved in neurite outgrowth of GT1 hypothalamic neuronal cells via ERK, but not the p38 MAP kinase signal pathway.  相似文献   

9.
Mitogen-Activated Protein Kinase (MAPK) pathway activation has been implicated in many types of human cancer. BRAF mutations that constitutively activate MAPK signalling and bypass the need for upstream stimuli occur with high prevalence in melanoma, colorectal carcinoma, ovarian cancer, papillary thyroid carcinoma, and cholangiocarcinoma. In this report we characterize the novel, potent, and selective BRAF inhibitor, dabrafenib (GSK2118436). Cellular inhibition of BRAFV600E kinase activity by dabrafenib resulted in decreased MEK and ERK phosphorylation and inhibition of cell proliferation through an initial G1 cell cycle arrest, followed by cell death. In a BRAFV600E-containing xenograft model of human melanoma, orally administered dabrafenib inhibited ERK activation, downregulated Ki67, and upregulated p27, leading to tumor growth inhibition. However, as reported for other BRAF inhibitors, dabrafenib also induced MAPK pathway activation in wild-type BRAF cells through CRAF (RAF1) signalling, potentially explaining the squamous cell carcinomas and keratoacanthomas arising in patients treated with BRAF inhibitors. In addressing this issue, we showed that concomitant administration of BRAF and MEK inhibitors abrogated paradoxical BRAF inhibitor-induced MAPK signalling in cells, reduced the occurrence of skin lesions in rats, and enhanced the inhibition of human tumor xenograft growth in mouse models. Taken together, our findings offer preclinical proof of concept for dabrafenib as a specific and highly efficacious BRAF inhibitor and provide evidence for its potential clinical benefits when used in combination with a MEK inhibitor.  相似文献   

10.
Recent research has implicated nitric oxide (NO) in the induction of the hypersensitive response (HR) during plant-pathogen interactions. Here we demonstrate that Arabidopsis suspension cultures generate elevated levels of NO in response to challenge by avirulent bacteria, and, using NO donors, show that these elevated levels of NO are sufficient to induce cell death in Arabidopsis cells independently of reactive oxygen species (ROS). We also provide evidence that NO-induced cell death is a form of programmed cell death (PCD), requiring gene expression, and has a number of characteristics of PCD of mammalian cells: NO induced chromatin condensation and caspase-like activity in Arabidopsis cells, while the caspase-1 inhibitor, Ac-YVAD-CMK, blocked NO-induced cell death. A well-established second messenger mediating NO responses in mammalian cells is cGMP, produced by the enzyme guanylate cyclase. A specific inhibitor of guanylate cyclase blocked NO-induced cell death in Arabidopsis cells, and this inhibition was reversed by the cell-permeable cGMP analogue, 8Br-cGMP, although 8Br-cGMP alone did not induce cell death or potentiate NO-induced cell death. This suggests that cGMP synthesis is required but not sufficient for NO-induced cell death in Arabidopsis. In-gel protein kinase assays showed that NO activates a potential mitogen-activated protein kinase (MAPK), although a specific inhibitor of mammalian MAPK activation, PD98059, which blocked H2O2-induced cell death, did not inhibit the effects of NO.  相似文献   

11.
SFKs are frequently deregulated in cancer where they control cellular proliferation, migration, survival and metastasis. Here we study the role of SFKs catalytic activity in triple-negative/basal-like and metastatic human breast cancer MDA-MB-231 cells employing three well-established inhibitors: Dasatinib, PP2 and SU6656. These compounds inhibited migration and invasion. Concomitantly, they reduced Fak, paxillin, p130CAS, caveolin-1 phosphorylation and altered cytoskeletal structures. They also inhibited cell proliferation, but in different manners. Dasatinib and PP2 increased p27(Kip1) expression and reduced c-Myc levels, restraining G1–S transition. In contrast, SU6656 did not modify p27(Kip1) expression, slightly altered c-Myc levels and generated polyploid multinucleated cells, indicating inhibition of cytokinesis. These later effects were also observed in SYF fibroblasts, suggesting a SFKs-independent action. ZM447439, an Aurora B kinase inhibitor, produced similar cell cycle and morphological alterations in MDA-MB-231 cells, indicating that SU6656 blocked Aurora B kinase. This was confirmed by inhibition of histone H3 phosphorylation, the canonical Aurora B kinase substrate. Furthermore, hierarchical clustering analysis of gene expression profiles showed that SU6656 defined a set of genes that differed from Dasatinib and PP2. Additionally, Gene Set Enrichment Analyses revealed that SU6656 significantly reduces the Src pathway. Together, these results show the importance of SFKs catalytic activity for MDA-MB-231 proliferation, migration and invasiveness. They also illustrate that SU6656 acts as dual SFKs and Aurora B kinase inhibitor, suggesting its possible use as a therapeutic agent in breast cancer.  相似文献   

12.
We investigated the mechanisms by which calcitonin (CT) suppresses cellular proliferation, using HEK-293 cells stably transfected with either the rat C1a CT receptor (CTR) or the insert-negative form of the human CTR. CT treatment of clonal cell lines expressing either receptor type, but not untransfected HEK-293 cells, strongly suppressed cell growth in a concentration-dependent manner. The reduction in cell growth with CT treatment could not be attributed to cellular necrosis or apoptotic cell death, the latter assessed by both DNA fragmentation analysis and caspase 3 (CPP-32) assay. Growth inhibition was associated with an accumulation of cells in the G2 phase of the cell cycle. CT treatment of the human and rat CTR-expressing cell lines resulted in a rapid and sustained induction of mRNA encoding the cyclin-dependent kinase inhibitor, p21WAF1/CIP1, increased levels of which were maintained at least 48 h after initiation of treatment. Western blot analysis showed a rapid corresponding increase in p21WAF1/CIP1 protein, whereas protein levels of another member of the cyclin-dependent kinase inhibitor family, p27kip1, were unchanged. In parallel with the induction of p21, CT treatment reduced levels of p53 mRNA and protein. CT treatment resulted in a specific cell cycle block in G2, which was associated with inhibition of Cdc2/cyclin B kinase activity as measured by histone H1 phosphorylation. There was no evidence for p21 association with this complex despite the inhibition of Cdc2 activity. Evidence that p21 induction was causative of cell growth suppression was obtained from p21 antisense oligonucleotide experiments. Treatment with a p21 antisense oligonucleotide blocked induction of p21 expression and significantly reduced the CT-mediated growth inhibition. These observations suggest that p21 is required for the G2 arrest in response to CT, but argue against a direct role of p21 in the inhibition of Cdc2 activity. These studies suggest a novel regulation of cell cycle progression by CT and will provide a basis for detailed examination of the molecular mechanisms involved.  相似文献   

13.
Many studies suggest that adenosine modulates cell responses in a wide array of tissues through potent and selective regulation of cytokine production. This study examined the effects of adenosine on interleukin (IL)‐6 expression and its related signal pathways in mouse embryonic stem (ES) cells. In this study, the adenosine analogue 5′‐N‐ethylcarboxamide (NECA) increased IL‐6 protein expression level. Mouse ES cells expressed the A1, A2A, A2B, and A3 adenosine receptors (ARs), whose expression levels were increased by NECA and NECA‐induced increase of IL‐6 mRNA expression or secretion level was inhibited by the non‐specific AR inhibitor, caffeine. NECA increased Akt and protein kinase C (PKC) phosphorylation, intracellular Ca2+ and cyclic adenosine monophosphate (cAMP) levels, which were blocked by caffeine. On the other hand, NECA‐induced IL‐6 secretion was partially inhibited by Akt inhibitor, bisindolylmaleimide I (PKC inhibitor), SQ 22536 (adenylate cyclate inhibitor) and completely blocked by the 3 inhibitor combination treatment. In addition, NECA increased mitogen activated protein kinase' (MAPK) phosphorylation, which were partially inhibited by the Akt inhibitor, bisindolylmaleimide I, and SQ 22536 and completely blocked by the 3 inhibitor combination treatment. NECA‐induced increases of IL‐6 protein expression and secretion levels were inhibited by MAPK inhibition. NECA‐induced increase of nuclear factor (NF)‐κB phosphorylation was inhibited by MAPK inhibitors. NECA also increased cAMP response element‐binding protein (CREB) phosphorylation, which was blocked by MAPK or NF‐κB inhibitors. Indeed, NECA‐induced increase of IL‐6 protein expression and secretion was blocked by NF‐κB inhibitors. In conclusion, NECA stimulated IL‐6 expression via MAPK and NF‐κB activation through Akt, Ca2+/PKC, and cAMP signaling pathways in mouse ES cells. J. Cell. Physiol. 219: 752–759, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The protein tyrosine kinase c-Src is a major signal transduction element in many growth factor receptor signals for proliferation and transformation. We showed recently that c-Src is a mediator of antiapoptotic signals through regulation of the antiapoptotic gene Bcl-XL. A431 cells overexpress the EGF receptor (EGFR) and possess high Src activity. In A431 cells, Src is activated by the EGFR, and inhibition of the EGF receptor results in c-Src inhibition. In this study we show that (i) inhibition of the EGFR kinase or Src kinase by specific inhibitors results in growth inhibition and inhibition of colony formation in soft agar. The relative efficacies of the EGFR kinase inhibitor and of the Src kinase inhibitor are similar suggesting the major role src plays in the oncogenic signaling of EGFR in A431 cells. (ii) The Src kinase inhibitor PP1 sensitizes A431 cells to CDDP-induced apoptosis. (iii) CDDP induces caspase-3-dependent cleavage of the c-Src C-terminal portion and a concomitant reduction in Bcl-XL levels. We conclude that c-Src is an important antiapoptotic signaling molecule downstream of the EGF receptor that contributes to the transformed phenotype of A431 cells.  相似文献   

15.
The Cdc25 dual specificity phosphatases coordinate cell cycle progression, but potent and selective inhibitors have generally been unavailable. In the present study, we have examined one potential inhibitor, 6-chloro-7-(2-morpholin-4-ylethylamino)-quinoline-5,8-dione (NSC 663284), that was identified in the compound library of the National Cancer Institute [corrected]. We found that NSC 663284 arrested synchronized cells at both G(1) and G(2)/M phase, and blocked dephosphorylation and activation of Cdk2 and Cdk1 in vivo, as predicted for a Cdc25 inhibitor. Using the natural Cdc25A substrate, Tyr(15)-phosphorylated Cdk2/cyclin A, we demonstrated that NSC 663284 blocked reactivation of Cdk2/cyclin A kinase by Cdc25A catalytic domain in vitro. In-gel trypsin digestion followed by capillary liquid chromatography-electrospray ionization mass spectrometry and tandem mass spectrometry revealed the direct binding of NSC 663284 to one of the two serine residues in the active site loop HCEFSSER of the Cdc25A catalytic domain. Cdc25 binding and inhibition could contribute to the anti-proliferative activity of NSC 663284 and its ability to arrest cell cycle progression. Moreover, NSC 663284 should be a valuable reagent to probe the actions of Cdc25 phosphatases within cells and may also be useful structure for the design of more potent and selective antiproliferative agents.  相似文献   

16.
We studied the modulating effect of protein tyrosine kinase inhibitors on the response of cells of the human chronic myelogenous leukemia cell line K562 to radiation. The radiosensitivity of the cells was increased by treatment with herbimycin A and decreased by treatment with genistein. This modulating effect of protein tyrosine kinase inhibitors on radiation sensitivity was associated with the alteration of the mode of radiation-induced cell death. After X irradiation, the cells arrested in the G(2) phase of the cell cycle, but these TP53(-/-) cells were unable to sustain cell cycle arrest. This G(2)-phase checkpoint deficit caused cell death. The morphological pattern of cell death was characterized by swelling of the cytoplasmic compartments, cytosolic vacuolation, disruption of the plasma membrane, less evident nuclear condensation, and faint DNA fragmentation, all of which were consistent with oncosis or cytoplasmic apoptosis. The nonreceptor protein tyrosine kinase inhibitor herbimycin A accelerated the induction of typical apoptosis by X irradiation, which was demonstrated by morphological assessments using nuclear staining and electron microscopy as well as oligonucleosomal fragmentation and caspase 3 activity. Herbimycin A is known to be a selective antagonist of the BCR/ABL kinase of Philadelphia chromosome-positive K562 cells; this kinase blocks the induction of apoptosis after X irradiation. Our results showed that the inhibition of protein tyrosine kinase by herbimycin A enhanced radiation-induced apoptosis in K562 cells. This effect was associated with the activation of caspase 3 and rapid abrogation of the G(2)-phase checkpoint with progression out of G(2) into G(1) phase. In contrast, the receptor-type protein tyrosine kinase inhibitor genistein protected K562 cells from all types of radiation-induced cell death through the inhibition of caspase 3 activity and prolonged maintenance of G(2)-phase arrest. Further investigations using this model may give valuable information about the mechanisms of radiation-induced apoptosis and about the radiosensitivity and radioresistance of chronic myelogenous leukemia cells having the Philadelphia chromosome.  相似文献   

17.
High expression of the epidermal growth factor receptor (EGFR) has been implicated in the development of squamous-cell carcinomas of head and neck (SCCHN). ZD1839 ('Iressa') is an orally active, selective EGFR-TKI (EGFR-tyrosine kinase inhibitor) that blocks signal transduction pathways implicated in proliferation and survival of cancer cells, and other host-dependent processes promoting cancer growth. We have demonstrated that ZD1839 induces growth arrest in SCCHN cell lines by inhibiting EGFR-mediated signaling. Cell cycle kinetic analysis demonstrated that ZD1839 induces a delay in cell cycle progression and a G1 arrest together with a partial G2/M block; this was associated with increased expression of both p27(KIP1) and p21(CIP1/WAF1) cyclin-dependent kinase (CDK) inhibitors. The activity of CDK2, the main target of CIP/KIP CDK inhibitors, was reduced in a dose-dependent fashion after 24 h of ZD1839 treatment and this effect correlated to the increased amount of p27(KIP1) and p21(CIP1/WAF1) proteins associated with CDK2-cyclin-E and CDK2-cyclin-A complexes. In addition, ZD1839-induced growth inhibition was significantly reduced in cell transfectants expressing p27(KIP1) or p21(CIP1/WAF1) antisense constructs. Overall, these results as well as the timing of the effect of ZD1839 on G1 arrest and p27(KIP1) and p21(CIP1/WAF1) upregulation, suggest a mechanistic connection between these events.  相似文献   

18.
Progression through the G1 phase of the cell cycle requires phosphorylation of the retinoblastoma gene product (pRb) by the cyclin D-dependent kinases CDK4 and CDK6, whose activity can specifically be blocked by the CDK inhibitor p16(INK4A). Misregulation of the pRb/cyclin D/p16(INK4A) pathway is one of the most common events in human cancer and has lead to the suggestion that inhibition of cyclin D-dependent kinase activity may have therapeutic value as an anticancer treatment. Through screening of a chemical library, we initially identified the [2,3-d]pyridopyrimidines as inhibitors of CDK4. Chemical modification resulted in the identification of PD 0183812 as a potent and highly selective inhibitor of both CDK4 and CDK6 kinase activity, which is competitive with ATP. Flow cytometry experiments showed that of the cell lines tested, only those expressing pRb demonstrated a G1 arrest when treated with PD 0183812. This arrest correlated in terms of incubation time and potency with a loss of pRb phosphorylation and a block in proliferation, which was reversible. These results suggest a potential use of this chemical class of compounds as therapeutic agents in the treatment of tumors with functional pRb, possessing cell cycle aberrations in other members of the pRb/cyclin D/p16(INK4A) pathway.  相似文献   

19.
The retroviral oncogene v-erbB encodes a truncated form of the receptor for epidermal growth factor, an integral membrane protein-tyrosine kinase. By contrast, the oncogene v-src encodes a protein-tyrosine kinase that is a peripheral membrane protein. The morphologies and spectra of cells transformed by these two oncogenes differ. In an effort to identify the functional determinant(s) of these differences, we constructed and tested first deletion mutants of v-erbB and then chimeras between v-src and v-erbB. As reported previously, the absence of any membrane anchorage eliminated transformation by v-erbB. Anchorage of the cytoplasmic kinase domain of v-erbB to membranes with amino-terminal portions of the v-src protein permitted transformation. The phenotype and spectrum of transformation were those expected for v-erbB rather than for v-src. The transforming chimeras lost their biological activity if the signal for myristylation at the amino terminus of v-src was compromised by mutation. Biochemical fractionations revealed a correlation between transforming activity and the association of chimeric gene products with the membrane fraction of the cell. For reasons not yet apparent, the combined presence of membrane anchorage domains of v-src, and the transmembrane domain of v-erbB in the same chimera typically (but not inevitably) impeded transformation. Our results suggest that the specificity of transformation by v-erbB resides in the selection of substrates by the cytoplasmic domain of the gene product. The protein retains access to those substrates even when anchored to the membrane in the manner of a peripheral rather than a transmembrane protein.  相似文献   

20.
Cannabinoids activate several members of the mitogen-activated protein kinase superfamily including p44 and p42 extracellular signal-regulated kinase (ERK). We used N1E-115 neuroblastoma cells and the cannabinoid receptor agonist WIN 55,212-2 (WIN) to examine the signal transduction pathways leading to the activation of ERK. ERK phosphorylation (activation) was measured by Western blot. The EC50 for stimulation of ERK phosphorylation was 10 nm, and this effect was blocked by pertussis toxin and the CB1 (cannabinoid) receptor antagonist SR141716A. The MEK inhibitors PD 98059 and U0126 blocked ERK phosphorylation, as did the adenylate cyclase activator forskolin. The phosphatidylinositol (PI) 3-kinase inhibitor LY 294002 and the Src kinase inhibitor PP2 partially occluded the response but also decreased basal levels of phospho-ERK. The PI 3-kinase and Src pathways are known to promote cell survival in many systems; therefore, MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan) conversion was used to examine the effects of these inhibitors on cellular viability. LY 294002 decreased the number of viable cells after 18 h of treatment; therefore, the inhibition of ERK by this inhibitor is probably because of cytotoxicity. Forskolin blocked ERK phosphorylation with an EC50 of <3 microm, and the protein kinase A (PKA) inhibitor H-89 enhanced ERK phosphorylation. c-Raf phosphorylation at an inhibitory PKA-regulated site (Ser259) was also reduced by WIN. This is probably due to constitutive phosphatase activity because WIN did not directly stimulate PP1 or PP2A activity when measured using 6,8-difluoro-4-methylumbelliferyl phosphate as a fluorogenic substrate. These data implicate the inhibition of PKA as the predominant pathway for ERK activation by CB1 receptors in N1E-115 cells. PI 3-kinase and Src appear to contribute to ERK activation by maintaining activation of kinases, which prime the pathway and maintain cellular viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号