首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated how cystic fibrosis (CF) alters the relationship between Cl(-) and mucin secretion in cultures of non-CF and CF human tracheobronchial gland mucous (HTGM and CFTGM, respectively) cells. Biochemical studies showed that HTMG cells secreted typical airway mucins, and immunohistochemical studies showed that these cells expressed MUC1, MUC4, MUC5B, MUC8, MUC13, MUC16, and MUC20. Effects of cumulative doses of methacholine (MCh), phenylephrine (Phe), isoproterenol (Iso), and ATP on mucin and Cl(-) secretion were studied on HTGM and CFTGM cultures. Baseline mucin secretion was not significantly altered in CFTGM cells, and the increases in mucin secretion induced by mediators were unaltered (Iso, Phe) or slightly decreased (MCh, ATP). Across mediators, there was no correlation between the maximal increases in Cl(-) secretion and mucin secretion. In HTGM cells, the Cl(-) channel blocker, diphenylamine-2-carboxylic acid, greatly inhibited Cl(-) secretion but did not alter mucin release. In HTGM cells, mediators (10(-5) M) increased mucin secretion in the rank order ATP > Phe = Iso > MCh. They increased Cl(-) secretion in the sequence ATP > MCh ≈ Iso > Phe. The responses in Cl(-) secretion to MCh, ATP, and Phe were unaltered by CF, but the response to Iso was greatly reduced. We conclude that mucin secretion by cultures of human tracheobronchial gland cells is independent of Cl(-) secretion, at baseline, and is unaltered in CF; that the ratio of Cl(-) secretion to mucus secretion varies markedly depending on mediator; and that secretions induced by stimulation of β-adrenergic receptors will be abnormally concentrated in CF.  相似文献   

2.
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a small conductance cAMP-activated chloride ion channel. In the CF pancreatic duct, mutations in CFTR cause a reduction in bicarbonate secretion. This is thought to result from CFTR operating in parallel with a chloride-bicarbonate (Cl(-)/HCO(-)(3)) exchanger, located in the apical membrane of pancreatic duct cells. The molecular basis of this Cl(-)/HCO(-)(3) exchanger has not been identified. A combination of screening cDNA libraries, RNase protection, and 5' RACE analysis was used to identify Cl(-)/HCO(-)(3) exchangers in human fetal pancreas. An AE2 Cl(-)/HCO(-)(3) exchanger was shown to be expressed in human fetal pancreas from the midtrimester of gestation, at a time when CF-associated pathology commences. In addition, an AE1 Cl(-)/HCO(3) was identified in fetal pancreas but was absent from the adult pancreas and cultured ductal epithelial cells from fetal and adult pancreas.  相似文献   

3.
Expression of the cystic fibrosis gene in human development.   总被引:10,自引:0,他引:10  
The specialised epithelia lining the respiratory tract, pancreatic ducts, male genital ducts and sweat gland ducts are defective in the severe inherited disease, cystic fibrosis (CF). We have looked at the expression of the CF gene in human fetal tissues to throw light on the development of function in specialised ductal epithelia and to determine the age of onset of the CF disease process. The CF gene is already seen to be transcribed in mid-trimester fetal lung, pancreas and male genital ducts. Hence, by this developmental stage, and before they are fully differentiated, these epithelia have the capability to perform important transport functions. Epithelial cell cultures derived from fetal pancreas and male genital ducts maintain expression of the CF gene in vitro and so form good models for analysing CF gene function and differentiation of these specialised epithelia.  相似文献   

4.
5.
The MUC6 mucin was originally isolated from stomach mucus and is one of the major secreted mucins of the digestive tract. A full-length cDNA has not been isolated for this large molecule (greater than 15 kb) and it remains poorly studied. To circumvent the lack of reagents for investigating MUC6, we isolated a cDNA clone from a human fetal pancreatic duct cDNA library that encodes 282 amino acids of the MUC6 tandem repeat. A blast search with the sequence of this cDNA clone showed 90% homology with the original MUC6 (L07517) derived from a human stomach cDNA library and 95% homology both with AK096772, a MUC6-related protein isolated from a human prostate cDNA library and the human genome project clone AC083984. The MUC6 partial cDNA clone isolated from fetal pancreas was inserted into an epitope-tagged MUC1 mucin molecule in place of the native tandem repeat. This chimeric mucin was expressed in human pancreatic (Panc1) and colon (Caco2) carcinoma cell lines and purified for analysis of O-glycosylation by fast atom bombardment mass spectrometry (FAB-MS). The FAB-MS spectra showed O-glycans that had been detected previously on chimeric mucins carrying different tandem repeats, though the spectra for MUC1F/6TR mucins expressed in the Panc1 and Caco2 cells were very different. There was a paucity of O-glycosylation in Panc1 cells in comparison to Caco2 cells where many more structures were evident, and the most abundant glycans in Panc1 cells were sialylated.  相似文献   

6.
The mouse model (Cftr(tm1UNC)/Cftr(tm1UNC)) for cystic fibrosis (CF) shows mucus accumulation and increased Muc1 mucin mRNA levels due to altered splicing (Hinojosa-Kurtzberg AM, Johansson MEV, Madsen CS, Hansson GC, and Gendler SJ. Am J Physiol Gastrointest Liver Physiol 284: G853-G862, 2003). However, it is not known whether Muc1 is a major mucin contributing to the increased mucus and why CF/Muc1-/- mice show lower mucus accumulation. To address this, we have purified mucins from the small intestine of CF mice using guanidinium chloride extraction, ultracentrifugation, and gel filtration and analyzed them by slot blot, gel electrophoresis, proteomics, and immunoblotting. Normal and CF mice with wild-type (WT) Muc1 or Muc1-/- or that are transgenic for human MUC1 (MUC1.Tg, on a Muc1-/- background) were analyzed. The total amount of mucins, both soluble and insoluble in guanidinium chloride, increased up to 10-fold in the CF mice compared with non-CF animals, whereas the CF mice lacking Muc1 showed intermediate levels between the CF and non-CF mice. However, the levels of Muc3 (orthologue of human MUC17) were increased in the CF/Muc1-/- mice compared with the CF/MUC1.Tg animals. The amount of MUC1 mucin was increased several magnitudes in the CF mice, but MUC1 did still not appear to be a major mucin. The amount of insoluble mucus of the large intestine was also increased in the CF mice, an effect that was partially restored in the CF/Muc1-/- mice. The thickness of the firmly adherent mucus layer of colon in the Muc1-/- mice was significantly lower than that of WT mice. The results suggest that MUC1 is not a major component in the accumulated mucus of CF mice and that MUC1 can influence the amount of other mucins in a still unknown way.  相似文献   

7.
Gel-forming mucins are large high-molecular weight secreted O-glycoproteins responsible for the gel-properties of the mucus blanket. Five orthologous gel-forming mucins have been cloned in human and mouse. Among them, the mucin MUC6 has been less studied, particularly in rodents and no anti rodent-Muc6 antibody has been reported yet. In order to further study Muc6 in mice, our aims were to obtain a specific Muc6 antibody, to validate it and to test it in Cftr deficient mice. A polyclonal serum named CP4 was isolated from a rabbit immunized by a mouse Muc6 peptide. In Western blot experiments, the antibody detected a high-molecular weight molecule secreted by the gastric tissue. Using immunohistochemistry, we showed that the antibody reacted strongly with deep glands of duodenum and ileum and mucous neck cells of gastric body. CP4 also recognized Muc6 protein secreted at the surface of the stomach and renal collecting tubules. The centroacinar cells of pancreatic tissue also reacted with the antibody. Cftr−/− mice showed a higher expression of Muc6 at both protein and RNA levels compared with their control Cftr+/+ littermates suggesting that as in the human disease, Muc6 may contribute to the formation of materials that block pancreatic acini and ducts in mouse models of cystic fibrosis. The rabbit anti-mouse Muc6 polyclonal antibody seems highly specific to the mouse mucin and will be useful to study pancreatic pathology in cystic fibrosis.  相似文献   

8.
A cystic fibrosis (CF) mouse expressing the human mucin MUC1 transgene (CFM) reverted the CF/Muc1(-/-) phenotype (little mucus accumulated in the intestine) to that of CF mice expressing mouse Muc1, which exhibited increased mucus accumulation. Western blots and immunohistochemical analysis showed that the MUC1 protein was markedly increased in CFM mice in which it was both membrane bound and secreted into the intestinal lumen. Studies to determine the reason for increased levels of the extracellular domain of MUC1 mucin identified mRNA and protein of two novel splice variants and the previously described secreted MUC1 lacking the cytoplasmic tail (MUC1/SEC). Novel MUC1 splice variants, CT80 and CT58, were both transmembrane proteins with cytoplasmic tails different from the normal MUC1. The MUC1-CT80 and MUC1/SEC forms are found expressed mainly in the CFM mice intestines. Thus MUC1 expression is increased, and it appears that alternate cytoplasmic tails may change its role in signaling. MUC1 could be an important contributor to the CF intestinal phenotype.  相似文献   

9.
10.
Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasms (IPMNs). Our immunohistochemistry (IHC) studies have shown a consensus position on mucin expression profiles in pancreatic neoplasms as follows: MUC1-positive but MUC2-negative expression in PDACs; MUC1-negative but MUC2-positive expression in intestinal-type IPMNs (dangerous type); MUC1-negative and MUC2-negative expression in gastric-type IPMNs (safe type); High MUC4 expression in PDAC patients with a poor outcome; and MUC4-positive expression in intestinal-type IPMNs. We also showed that three mucin genes (MUC1, MUC2 and MUC4) expression in cancer cell line was regulated by DNA methylation. We have developed a novel ‘methylation-specific electrophoresis (MSE)’ method to analyze the DNA methylation status of mucin genes by high sensitivity and resolution. By using the MSE method, we evaluated pancreatic juice samples from 45 patients with various pancreatic lesions. The results were compared with final diagnosis of the pancreatic lesions including IHC of mucin expression in the paired pancreatic tissues. The results indicated that the DNA methylation status of MUC1, MUC2 and MUC4 in pancreatic juice matched with the mucin expression in tissue. Analyses of the DNA methylation status of MUC1, MUC2 and MUC4 were useful for differential diagnosis of human pancreatic neoplasms, with specificity and sensitivity of 87% and 80% for PDAC; 100% and 88% for intestinal-type IPMN; and 88% and 77% for gastric-type IPMN, respectively. In conclusion, MSE analysis of human pancreatic juice may provide useful information for selection of treatment for pancreatic neoplasms.  相似文献   

11.
A longstanding question in obstructive airway disease is whether observed changes in mucin composition and/or posttranslational glycosylation are due to genetic or to environmental factors. We tested whether the mucins secreted by second-passage primary human bronchial epithelial cell cultures derived from noncystic fibrosis (CF) or CF patients have intrinsically different specific mucin compositions, and whether these mucins are glycosylated differently. Both CF and non-CF cultures produced MUC5B, predominantly, as judged by quantitative agarose gel Western blots with mucin-specific antibodies: MUC5B was present at approximately 10-fold higher levels than MUC5AC, consistent with our previous mRNA studies (Bernacki SH, Nelson AL, Abdullah L, Sheehan JK, Harris A, William DC, and Randell SH. Am J Respir Cell Mol Biol 20: 595-604, 1999). O-linked oligosaccharides released from purified non-CF and CF mucins and studied by HPLC mass spectrometry had highly variable glycan structures, and there were no observable differences between the two groups. Hence, there were no differences in either the specific mucins or their O-glycans that correlated with the CF phenotype under the noninfected/noninflammatory conditions of cell culture. We conclude that the differences observed in the mucins sampled directly from patients are most likely due to environmental factors relating to infection and/or inflammation.  相似文献   

12.
The MUC6 mucin has a critical protective function in the normal stomach, pancreas and duodenum and is aberrantly expressed during the progression of some gastrointestinal cancers. Our aim was to determine whether MUC6 contributes to the etiology or progression of pancreatic cancer and elucidate the molecular basis of its involvement. Expression of MUC6 glycoprotein was examined in pancreatic cancer tissues by immunofluorescence and loss of MUC6 was observed. Next, to determine whether MUC6 inhibits tumor growth and metastasis by altering cell adhesion and invasion, recombinant MUC6 cDNA and separate MUC6 N-terminal and C-terminal domains were transfected into pancreatic, colorectal and breast cancer cell lines. The recombinant N- and C-terminal proteins were each seen to oligomerize under non-reducing conditions. Overexpression of both domains of the MUC6 glycoprotein significantly inhibited cell adhesion to matrix proteins (collagen I, collagen IV, fibronectin and laminin) in LS 180 but not in PANC-1 cells. Moreover, the N- and C-terminal domains of MUC6 inhibited invasion of both LS 180 and PANC-1 cells by 40% and 70%, respectively, in comparison with controls. These results suggest that MUC6 may inhibit invasion of tumor cells through the basement membrane of the pancreatic duct and slow the development of infiltrating carcinoma.  相似文献   

13.
14.
15.
Pancreatic cancer (PC) is a lethal malignancy primarily driven by activated Kras mutations and characterized by the deregulation of several genes including mucins. Previous studies on mucins have identified their significant role in both benign and malignant human diseases including PC progression and metastasis. However, the initiation of MUC expression during PC remains unknown because of lack of early stage tumor tissues from PC patients. In the present study, we have evaluated stage specific expression patterns of mucins during mouse PC progression in (KrasG12D;Pdx1-Cre (KC)) murine PC model from pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma (PDAC) by immunohistochemistry and quantitative real-time PCR. In agreement with previous studies on human PC, we observed a progressive increase in the expression of mucins particularly Muc1, Muc4 and Muc5AC in the pancreas of KC (as early as PanIN I) mice with advancement of PanIN lesions and PDAC both at mRNA and protein levels. Additionally, mucin expression correlated with the increased expression of inflammatory cytokines IFN-γ (p?相似文献   

16.
Mucus obstruction is a central feature in the cystic fibrosis (CF) airways. A genome-wide association study (GWAS) of lung disease by the CF Gene Modifier Consortium (CFGMC) identified a significant locus containing two mucin genes, MUC20 and MUC4. Expression quantitative trait locus (eQTL) analysis using human nasal epithelia (HNE) from 94 CF-affected Canadians in the CFGMC demonstrated MUC4 eQTLs that mirrored the lung association pattern in the region, suggesting that MUC4 expression may mediate CF lung disease. Complications arose, however, with colocalization testing using existing methods: the locus is complex and the associated SNPs span a 0.2 Mb region with high linkage disequilibrium (LD) and evidence of allelic heterogeneity. We previously developed the Simple Sum (SS), a powerful colocalization test in regions with allelic heterogeneity, but SS assumed eQTLs to be present to achieve type I error control. Here we propose a two-stage SS (SS2) colocalization test that avoids a priori eQTL assumptions, accounts for multiple hypothesis testing and the composite null hypothesis, and enables meta-analysis. We compare SS2 to published approaches through simulation and demonstrate type I error control for all settings with the greatest power in the presence of high LD and allelic heterogeneity. Applying SS2 to the MUC20/MUC4 CF lung disease locus with eQTLs from CF HNE revealed significant colocalization with MUC4 (p = 1.31 × 10?5) rather than with MUC20. The SS2 is a powerful method to inform the responsible gene(s) at a locus and guide future functional studies. SS2 has been implemented in the application LocusFocus.  相似文献   

17.
Human lacrimal gland mucins   总被引:6,自引:0,他引:6  
  相似文献   

18.
Nestin is expressed in vascular endothelial cells in the adult human pancreas.   总被引:22,自引:0,他引:22  
In this study we examined the expression of nestin in islets, the exocrine part, and the big ducts of the adult human pancreas by immunofluorescent double staining. Two different anti-nestin antisera in combination with various pancreatic and endothelial markers were employed. Nestin-immunoreactive cells were found in islets and in the exocrine portion. All nestin-positive cells co-expressed the vascular endothelial markers PECAM-1 (CD31), endoglin (CD105), and CD34 as well as vimentin. Endocrine, acinar, and duct cells did not stain for nestin. We also demonstrated that in the area of big pancreatic ducts, nestin-positive cells represent small capillaries scattered in the connective tissue surrounding the duct epithelium and do not reside between the duct cells. We detected nestin-expressing endothelial cells located adjacent to the duct epithelium where endocrine differentiation occurs. We have shown that nestin is expressed by vascular endothelial cells in human pancreas, and therefore it is unlikely that nestin specifically marks a subpopulation of cells representing endocrine progenitors in the adult pancreas.  相似文献   

19.
MUC4, a transmembrane mucin, is aberrantly expressed in pancreatic adenocarcinomas while remaining undetectable in the normal pancreas. Recent studies have shown that the expression of MUC4 is associated with the progression of pancreatic cancer and is inversely correlated with the prognosis of pancreatic cancer patients. In the present study, we have examined the phenotypic and molecular consequences of MUC4 silencing with an aim of establishing the mechanistic basis for its observed role in the pathogenesis of pancreatic cancer. The silencing of MUC4 expression was achieved by stable expression of a MUC4-specific short hairpin RNA in CD18/HPAF, a highly metastatic pancreatic adenocarcinoma cell line. A significant decrease in MUC4 expression was detected in MUC4-knockdown (CD18/HPAF-siMUC4) cells compared with the parental and scrambled short interfering RNA-transfected (CD18/HPAF-Scr) control cells by immunoblot analysis and immunofluorescence confocal microscopy. Consistent with our previous observation, inhibition of MUC4 expression restrained the pancreatic tumor cell growth and metastasis as shown in an orthotopic mouse model. Our in vitro studies revealed that MUC4-associated increase in tumor cell growth resulted from both the enhanced proliferation and reduced cell death. Furthermore, MUC4 expression was also associated with significantly increased invasiveness (P < or = 0.05) and changes in actin organization. The presence of MUC4 on the cell surface was shown to interfere with the tumor cell-extracellular matrix interactions, in part, by inhibiting the integrin-mediated cell adhesion. An altered expression of growth- and metastasis-associated genes (LI-cadherin, CEACAM6, RAC1, AnnexinA1, thrombomodulin, epiregulin, S100A4, TP53, TP53BP, caspase-2, caspase-3, caspase-7, plakoglobin, and neuregulin-2) was also observed as a consequence of the silencing of MUC4. In conclusion, our study provides experimental evidence that supports the functional significance of MUC4 in pancreatic cancer progression and indicates a novel role for MUC4 in cancer cell signaling.  相似文献   

20.
Pancreatic cancer is a highly aggressive, treatment refractory cancer and is the fourth leading cause of death in the United States. In humans, 90% of pancreatic adenocarcinomas overexpress altered forms of a tumor-specific Ag, mucin 1 (MUC1; an epithelial mucin glycoprotein), which is a potential target for immunotherapy. We have established a clinically relevant animal model for pancreatic cancer by developing a double transgenic mouse model (called MET) that expresses human MUC1 as self molecule and develops spontaneous tumors of the pancreas. These mice exhibit acinar cell dysplasia at birth, which progresses to microadenomas and acinar cell carcinomas. The tumors express large amounts of underglycosylated MUC1 similar to humans. Tumor-bearing MET mice develop low affinity MUC1-specific CTLs that have no effect on the spontaneously occurring pancreatic tumors in vivo. However, adoptive transfer of these CTLs was able to completely eradicate MUC1-expressing injectable tumors in MUC1 transgenic mice, and these mice developed long-term immunity. These CTLs were MHC class I restricted and recognized peptide epitopes in the immunodominant tandem repeat region of MUC1. The MET mice appropriately mimic the human condition and are an excellent model with which to elucidate the native immune responses that develop during tumor progression and to develop effective antitumor vaccine strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号