共查询到20条相似文献,搜索用时 0 毫秒
1.
J M May 《FEBS letters》1988,241(1-2):188-190
Depletion of ATP is known to inhibit glucose transport in human erythrocytes, but the kinetic mechanism of this effect is controversial. Selective ATP depletion of human erythrocytes by 10 micrograms/ml A23187 in the presence of extracellular calcium inhibited 3-O-methylglucose influx noncompetitively and efflux competitively. ATP depletion also decreased the ability of either equilibrated 3-O-methylglucose or extracellular maltose to inhibit cytochalasin B binding in intact cells, whereas neither total high-affinity cytochalasin B binding nor its Kd was affected. Under the one-site model of hexose transport these data indicate that ATP depletion decreases both the affinity of the inward-facing glucose carrier for substrate and its ability to reorient outwardly in intact cells. 相似文献
2.
R J Germinario S Andrejchyshyn A Kristof Z Chang M Oliveira L Citrynbaum 《Journal of cellular physiology》1990,143(1):88-93
The transport of [3H]2-deoxy-D-glucose (2DG) and [3H]3-O-methyl-D-glucose (3-OMG) was elevated in a respiration deficient (NADH coenzyme Q [Co Q] reductase deficient) Chinese hamster lung fibroblast cell line (G14). This sugar transport increase was related to an increased Vmax for 2DG transport, 26.9 +/- 4.2 nmoles 2DG/mg protein/30 sec in the G14 cell line vs 9.5 +/- 0.6 nmoles 2DG/mg protein/30 sec in the parental V79 cell line. No differences were observed in their respective Km values for 2DG transport (3.9 +/- .6 vs. 3.0 +/- .13 mM). Factors which increase sugar transport (e.g., glucose deprivation, serum or insulin exposure) or decrease sugar transport (e.g., serum deprivation) in the parental V79 cell line had little effect on sugar transport in the G14 respiration deficient cell lines. Amino acid transport, specific 125I-insulin binding to cells, and insulin-stimulated DNA synthesis, however, were similar in both cell lines. Exposure of both cell lines to varying concentrations of cycloheximide (0.1-50 micrograms/ml) for 4 h resulted in differential effects on 2DG transport. In the parental cell line (V79) low cycloheximide concentrations resulted in decreased 2DG transport, while higher concentrations (greater than or equal to 1 microgram/ml) resulted in elevated 2DG transport. In the G14 cell line, 2DG transport decreased at all concentrations of cycloheximide (up to 50 micrograms/ml). The data indicate that the G14 mutant has been significantly and specifically affected in the expression of sugar transport activity and in the regulatory controls affecting sugar transport activity. 相似文献
3.
Hexose transport in isolated perifused rat and guinea pig left atria and in isolated intact rat hemidiaphragms was followed by measuring the tissue/medium distribution of the nonmetabolized glucose analog, 3-O-methyl-D-glucose. Stimulation of 3-methylglucose transport by insulin, hyperosmolar medium, K+-free medium, and ouabain was depressed or absent in Ca2+-free medium. Addition of 2 mM Sr2+ to Ca2+-free media restored the response of transport to the stimulatory factors. Sr2+ also increased basal hexose transport. The Ca2+ dependence and the effect of Sr2 was greatest in guinea pig atria and least in rat hemidiaphragms. It is concluded that Sr2+ plays a Ca2+-like role in the regulation of hexose transport. 相似文献
4.
The effect of insulin on hexose transport in cultured human skin fibroblasts. Studies were carried out on cultures of human skin fibroblasts to explore the effect of insulin on hexose transport in serum-starved monolayers. Insulin (100 mU/ml) stimulated 2-deoxy-D-glucose transport (30% above control values) after 30 minutes exposure time, the response being similar up to four hours exposure to insulin. In several experiments (n = 22) employing three cell strains, insulin (100 mU/ml) exposure led to variable stimulation of 2-deoxy-D-glucose transport (an average of 37% above control values, with a range of 0 = 120%). The insulin-induced stimulation of 2-deoxy-D-glucose transport showed a dose dependency with increasing amounts of insulin, the response being maximal at an insulin concentration of 100 mU/ml. Kinetic analysis of 2-deoxy-D-glucose transport showed that insulin addition resulted in a slight change in the transport Km (3.13 to 4.06 mM) and a 1.8-fold increase in the transport Vmax (17.6 nanomoles/mg protein/min to 32.1 nanomoles/mg protein/min). Insulin also stimulated the transport of 3-0-methyl-D-glucose while the hexokinase activity of the cells was not affected. Further, this insulin-induced stimulation of sugar transport was not blocked by cycloheximide. The results indicate that insulin stimulated the stereospecific carrier-mediated of hexose transport in cultured human skin fibroblasts. 相似文献
5.
The mechanism underlying ATP-induced permeabilization of transformed mouse fibroblasts was studied by using nonhydrolyzable analogues of ATP. Incubation of 3T6 cells with 0.6 mM of either ATP, 5'-adenylyl imidodiphosphate (p[NH]ppA) or adenosine 5'-[beta, gamma-methylene]triphosphate (p[CH2]ppA) resulted in an increase of 17-, 8- or 5-times, respectively, in the cell membrane permeability, measured by the efflux of normally impermeant metabolites from the cells. The induced cell permeabilization was preceded by a reduction in the membrane potential (delta psi), determined according to the distribution of the cation tetraphenylphosphonium (TPP+) between the cells and the medium. Reduction of 26, 18 and 13 mV in delta psi was exerted by 0.6 mM of either ATP, p[NH]ppA or p[CH2]ppA, respectively. In 3T3 cells the untransformed counterparts of 3T6 cells, neither reduction of delta psi, nor alterations in membrane permeability were exerted by either ATP or by its analogues. The data indicate that the dissociation of the beta, gamma-phosphate bond is not essential for membrane permeabilization by external ATP, implying that the binding of ATP to the cell surface of transformed cells is sufficient to initiate the permeabilization process. The data also suggest that delta psi is involved in the control of membrane permeability. 相似文献
6.
7.
The mechanism underlying ATP-induced permeabilization of transformed mouse fibroblasts was studied by using nonhydrolyzable analogues of ATP. Incubation of 3T6 cells with 0.6 mM of either ATP, 5′-adenylyl imidodiphosphate (p[NH]ppA) or adenosine 5′-[β,γ-methylene]triphosphate (p[CH2]ppA) resulted in an increase of 17-, 8- or 5-times, respectively, in the cell membrane permeability, measured by the efflux of normally impermeant metabolites from the cells. The induced cell permeabilization was preceded by a reduction in the membrane potential (Δψ), determined according to the distribution of the cation tetraphenylphosphonium (TPP+) between the cells and the medium. Reduction of 26, 18 and 13 mV in Δψ was exerted by 0.6 mM of either ATP, p[NH]ppA or p[CH2]ppA, respectively. In 3T3 cells the untransformed counterparts of 3T6 cells, neither reduction of Δψ, nor alterations in membrane permeability were exerted by either ATP or by its analogues. The data indicate that the dissociation of the β,γ-phosphate bond is not essential for membrane permeabilization by external ATP, implying that the binding of ATP to the cell surface of transformed cells is sufficient to initiate the permeabilization process. The data also suggest that Δψ is involved in the control of membrane permeability. 相似文献
8.
Interleukin 1 stimulates hexose transport in fibroblasts by increasing the expression of glucose transporters 总被引:5,自引:0,他引:5
T A Bird A Davies S A Baldwin J Saklatvala 《The Journal of biological chemistry》1990,265(23):13578-13583
Exposure of quiescent cultures of human gingival fibroblasts (HuGi) and porcine synovicocytes (PSF) to human recombinant interleukin 1 alpha or -beta (IL1 alpha and -beta) enhanced the rate of glycolysis as judged by increased lactate production. The cytokines also increased uptake of [3H]2-deoxyglucose (DG) in a time- and dose-dependent manner. Stimulation of DG uptake was first evident 6-8 h following addition of IL1 and was maximal by 24-30 h. IL1 alpha and -beta were equipotent. Half-maximal stimulation occurred at approximately 1 pM IL1; maximal stimulation (2.5-4.5-fold in HuGi, 3-7-fold in PSF) was obtained with approximately 80 pM IL1. The dose-response curves for lactate production and DG uptake were similar. Increased DG uptake was blocked by specific antisera to IL1 and by inhibitors of protein and RNA synthesis but not by indomethacin, an inhibitor of prostaglandin production. DG uptake was enhanced by IL1 in serum-starved cells in the presence of neutralizing anti-platelet-derived growth factor serum. The effect was therefore not secondary to prostaglandin or platelet-derived growth factor production. No increase in cell cycling was detected in IL1-treated cells under the experimental conditions. Kinetic analysis revealed that the Vmax for DG uptake was increased by IL1 (from 36 to 144 pmol/min/mg of cell protein), whereas the Km was unchanged. HuGi cells were pulse-labeled with [35S]methionine following exposure to IL1. Cell lysates were immunoprecipitated using a specific antiserum raised against human erythrocyte glucose transporter. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis/autoradiography of these immunoprecipitates revealed dose- and time-dependent increases in the net rate of glucose transporter synthesis which mirrored the changes in DG uptake. 相似文献
9.
Freshly harvested Halobacterium halobium cells grown in the presence of 0.5 mM Pi took up phosphate with a low apparent Km. Import depended on intracellular ATP levels; sodium and proton (electro)chemical gradients alone were not competent to drive Pi uptake. Although most of the phosphate accumulated as Pi in the cells, efflux of Pi was difficult to achieve. 相似文献
10.
Kang J Heart E Sung CK 《American journal of physiology. Endocrinology and metabolism》2001,280(3):E428-E435
Glucosamine induced insulin resistance in 3T3-L1 adipocytes, which was associated with a 15% decrease in cellular ATP content. To study the role of ATP depletion in insulin resistance, we employed sodium azide (NaN3) and dinitrophenol (DNP), which affect mitochondrial oxidative phosphorylation, to achieve a similar 15% ATP depletion. Unlike glucosamine, NaN3 and DNP markedly increased basal glucose transport, and the increased basal glucose transport was associated with increased GLUT-1 content in the plasma membrane without changes in total GLUT-1 content. These agents, like glucosamine, did not affect the early insulin signaling that is implicated in insulin stimulation of glucose transport. In cells with a severe 40% ATP depletion, basal glucose transport was similarly elevated, and insulin-stimulated glucose transport was similar in cells with 15% ATP depletion. In these cells, however, early insulin signaling was severely diminished. These data suggest that cellular ATP depletion by glucosamine, NaN3, and DNP exerts differential effects on basal and insulin-stimulated glucose transport and that ATP depletion per se does not induce insulin resistance in 3T3-L1 adipocytes. 相似文献
11.
Complexity in valinomycin effects on amino acid transport 总被引:7,自引:0,他引:7
12.
Ca2+-dependent stimulation of hexose transport by A23187, 12-O-tetradecanoylphorbol-13-acetate and epidermal growth factor in mouse fibroblasts 总被引:1,自引:0,他引:1
K Yamanishi H Nishino A Iwashima 《Biochemical and biophysical research communications》1983,117(2):637-642
Ca2+ ionophore A23187 stimulated 2-deoxy-D-glucose (2DG) uptake in Swiss 3T3 mouse fibroblasts. Chelation of extracellular Ca2+ with ethylene-glycol-bis-(beta-aminoethylether) N,N'-tetraacetic acid (EGTA) inhibited the effect of A23187. Similarly, the stimulation of 2DG uptake by a tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) was prevented by EGTA, whereas the epidermal growth factor (EGF)-stimulated 2DG uptake was not affected by EGTA alone, but in the presence of both EGTA and A23187 which effectively depleted cellular Ca2+ content, EGF could no longer stimulate 2DG uptake. These results suggest that Ca2+ regulates hexose transport system in Swiss 3T3 mouse fibroblasts, the activation of which by TPA and EGF differently depends on Ca2+. 相似文献
13.
The effects of various sulfhydryl modifying reagents on hexose transport in cultured human skin fibroblasts were studied. H2O2 was observed to have no effect on 2-deoxy-D-glucose transport in serum-starved glucose-fed cells. The elevation of hexose transport rates in cells by glucose deprivation, insulin, or serum stimulation rendered them sensitive to H2O2. Hexose transport in glucose-deprived cells was inhibited 51-55% by 1-2 mM H2O2, while hexose transport in insulin or serum-stimulated glucose-fed cells was inhibited 45% and 46%, respectively. H2O2 inhibition was blocked or reversed by 8 mM dithiothreitol. N-ethyl-maleimide (NEM), a permeant, sulfhydryl reagent, elicited effects on hexose transport similar to those effected by H2O2 (i.e., in glucose-deprived and insulin-stimulated cells, inhibition of hexose transport was 44% and 23%, respectively). Impermeant sulfhydryl reagents such as dithio(bis)nitrobenzoic acid (DTNB) and N-iodoacetyl-N'-(5-sulfo-1-naphthly-ethylenediame (1,5,-I-AEDANS) had no inhibitory effect on hexose transport under any conditions (i.e., glucose-fed, glucose-deprived, and insulin-stimulated cells). DTNB and 1,5-I-AEDANS afforded no protection from the action of H2O2 on hexose transport. The data suggest that the sensitive sites are thiol in nature and are located at an intramembrane or intracellular site and probably not exofacial. 相似文献
14.
15.
Induction of sugar transport in chick embryo fibroblasts by hexose starvation. Evidence for transcriptional regulation of transport. 总被引:5,自引:0,他引:5
Incubation of chick embryo fibroblasts in glucose-free medium resulted in a dramatic increase in the rate of 2-deoxy-D-glucose transport. The greatest increase in rate occurred during the first 20 hours of incubation in glucose-free medium and was blocked by actinomycin D, dordycepin, or cycloheximide. The conditions of 2-deoxy-D-glucose concentration and time of incubation with the sugar were determined where transport rather than phosphorylation was rate-limiting in sugar uptake. These studies demonstrated that the transport of 2-deoxy-D-glucose was rate-limiting for only 1 or 2 min when the concentration of sugar in the medium was near the Km for transport, i.e. 2mM. No difference was found in the level of hexokinase activity in homogenates prepared from cells incubated glucose-free medium or standard medium when either 2-deoxy-D-[14C]glucose or D-glucose was used as substrate. A kinetic analysis of the initial rates of 2-deoxy-D-glucose transport by Lineweaver-Burk plots showed that the Vmax for sugar transport increased from 18 to 95 nmol per mg of protein per min when fibroblasts were incubated in glucose-free medium for 40 hours. The Km remained constant at 2 mM. Analysis of the initial rates of 3-omicron-methyl-D-glucose transport by Lineweaver-Burk plots further substantiated that the increase in sugar transport was due to an increase in the Vmax for transport with the Km remaining constant. The activation energy for the transport reaction calculated from an Arrhenius plot was 17.4 Cal per mol for cells cultured in the standard medium and 17.2 Cal per mol for cells cultured in the glucose-free medium. These results are consistent with the interpretation that the Vmax increase observed in hexose-starved cells is due to an increase in the number of transport sites. 相似文献
16.
《生物化学与生物物理学报:生物膜》1985,821(1):67-71
The role of glycosylation of the carrier in the transporting activity was investigated in Swiss 3T3 cells. Inhibition of protein glycosylation by tunicamycin resulted in the decrease of hexose uptake in a dose- and time-dependent manner without a cytotoxic effect. From kinetic analysis, a decrease in the number or availability of hexose carriers in the plasma membrane was suggested. This was in good correlation with the decrease in the amount of photoaffinity cytochalasin B binding in the plasma membrane by the treatment with tunicamycin. The rate of phorbol 12,13-dibutyrate-induced translocation of the hexose carrier from microsomal to plasma membrane was reduced in tunicamycin-treated cells, which may be correlated with the decrease in the number of the completely glycosylated carrier translocatable from the microsomal membrane. In both tunicamycin-treated and untreated cells, the stimulation of hexose transport by phorbol 12,13-dibutyrate was abolished by the removal of phorbol 12,13-dibutyrate, and upon its readdition the stimulation recovered to the same degree as before the removal. Thus, the recycling of the functionally mature hexose carrier appeared not to be affected by the treatment with tunicamycin. These results suggested that complete glycosylation of the carrier may be necessary for the translocation of the carrier from microsomal to plasma membrane to accomplish its function on the cell surface. 相似文献
17.
18.
DNA excision repair requires the insertion of bases into gaps in the DNA which arise during the removal of damaged sites from the chromatin. The number of bases required is dependent on the amount of damage and the patch size of repair in response to the particular type of damage. In cells in which the ability to synthesize deoxynucleoside triphosphates (dNTPs) has been compromised, repair cannot proceed to completion following doses of DNA-damaging agents which induce repair that requires greater than the steady-state level of dNTPs. Repair is thus not equally sensitive to depletion of dNTPs when measured in rapidly cycling cells with relatively high dNTP pools or in non-cycling cells with significantly smaller pools. Critical depletion of dNTPs results in the production of long-lived DNA strand breaks at repairing sites and reduction in the number of sites initiating repair. On the other hand, elevation of dNTP pools to 10–50-fold normal levels did not inhibit repair. This indicates that dNTP pool depletion but not general pool-imbalance affects DNA excision repair. 相似文献
19.
Dual role of ATP in supporting volume-regulated chloride channels in mouse fibroblasts 总被引:4,自引:0,他引:4
Bryan-Sisneros A Sabanov V Thoroed SM Doroshenko P 《Biochimica et biophysica acta》2000,1468(1-2):63-72
The effects of inhibitors of protein tyrosine kinases (PTKs) on the Cl(-) current (I(Cl(vol))) through volume-regulated anion/chloride (VRAC) channels whilst manipulating cellular ATP have been studied in mouse fibroblasts using the whole-cell patch clamp technique. Removal of ATP from the pipette-filling solution prevented activation of the current during osmotic cell swelling and when the volume of patched cells was increased by the application of positive pressure through the patch pipette to achieve rates exceeding 100%/min. Equimolar substitution of ATP in the pipette solution with its non-hydrolyzable analogs, adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) or adenylyl-(beta,gamma-methylene)-diphosphonate (AMP-PCP), not only supported activation of the current but also maintained its amplitude. The PTK inhibitors, tyrphostins A25, B46, 3-amino-2,4-dicyano-5-(4-hydroxyphenyl)penta-2,4-dienonitrile++ + and genistein (all at 100 microM), inhibited I(Cl(vol)) in a time-dependent manner. Tyrphostin A1, which does not inhibit PTK activity, did not affect the current amplitude. The PTK inhibitors also inhibited I(Cl(vol)) under conditions where ATP in the pipette was substituted with ATPgammaS or AMP-PCP. We conclude that in mouse fibroblasts ATP has a dual role in the regulation of the current: it is required for protein phosphorylation to keep VRAC channels operational and, through non-hydrolytic binding, determines the magnitude of I(Cl(vol)). We also suggest that tyrosine-specific protein kinases and phosphatases exhibit an interdependent involvement in the regulation of VRAC channels. 相似文献
20.
Proton-coupled hexose transport in Chlorella vulgaris 总被引:15,自引:0,他引:15
E Komor 《FEBS letters》1973,38(1):16-18