首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a simple and novel method for the determination of polychlorinated biphenyls (PCBs), using silver nanoparticles (AgNPs) as a resonance light scattering (RLS) probe, is proposed. Under optimized conditions, there existed linear relationships between the enhancing RLS intensity of the system and the concentrations of PCBs in the range 8.0 × 10?8?1.0 × 10?6 g mL?1 for 2,4,4′‐trichlorbiphenyl (PCB28), 9.0 × 10?8?1.0 × 10?6 g mL?1 for 2,2′,5,5′‐tetrachlorbiphenyl (PCB52) and 4.0 × 10?8?1.0 × 10?6 g mL?1 for 3,3′,4,4′‐tetrachlorobiphenyl (PCB77). The corresponding detection limits (S/N = 3) were 2.6 × 10?8 g mL?1 for PCB28, 3.3 × 10?8 g mL?1 for PCB52 and 6.3 × 10?9 g mL?1 for PCB77, respectively. Finally, the mechanism of RLS enhancement was also studied. The results indicated that PCBs were adsorbed on the surface of AgNPs to form larger AgNP–PCB aggregates, resulting in the RLS enhancement of the system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A method for rapid detection and quantitative characterization of associations between two proteins in solution is presented, based upon continuous measurement of the Rayleigh light scattering and UV absorbance of a solution whose composition is varied with time in a controlled fashion. Collection and subsequent analysis of data are both rapid and semiautomatic. The results of validation experiments demonstrate that the technique can correctly identify complexes and reliably evaluate equilibrium constants for hetero-association.  相似文献   

3.
Fullerol has been synthesized through the reaction of fullerene C60 with NaOH in aqueous solution by means of ultrasonic agitation and characterized by infrared and 1H-nuclear magnetic resonance spectroscopy. The fullerol obtained shows good solubility and excellent stability in water. A weak resonance light scattering (RLS) spectrum of fullerol was observed in aqueous solution. However, the intensity of the RLS signal could be enhanced in the presence of proteins, including bovine serum albumin (BSA), human serum albumin (HSA), pepsin (Pep), and lysozyme (Lys). Based on the enhancement of the RLS, a sensitive method for the determination of proteins has been established. The quantitative conditions were considered with regard to the effects of the pH, the ion strength, and the concentration of the fullerol. Under the optimum conditions, the intensity of the RLS was proportional to the concentration of proteins with the limits of detection of 9.7, 10.9, 57.4, and 8.5 ng mL(-1) for BSA, HSA, Pep, and Lys, respectively. Almost no interference can be observed from some amino acids, nucleic acids, and most of the metal ions. The model samples and human serum samples were determined satisfactorily with the proposed method.  相似文献   

4.
A flow injection analysis (FIA) system combined with Rayleigh light scattering (RLS) detection is developed for the sensitive and rapid determination of protein concentration in human serum sample. This method is based on the weak intensity of RLS of Eriochrome Black T (EBT, 2-hydroxy-1-(1-hydroxy-2-naphthylazo)-6-nitronaphthalene-4-sulfonic acid sodium salt), which can be enhanced by the addition of protein in weakly acidic solution. The effects of pH and interfering species on the determination of protein were examined. Calibrations for protein, based on RLS intensity, were linear in the concentration ranges of 7-36 microg/ml for human serum album (HSA) and 8-44 microg/ml for bovine serum album (BSA). The detection limits of the method were found to be 0.882 and 2.507 microg/ml for HSA and BSA, respectively. A relative standard deviation of 0.76% (n=5) was obtained with 20 microg/ml HSA standard solution. The FIA-RLS method was more stable than the general RLS method, and the average RSD value of FIA-RLS was less than that of the general RLS. The sample rate was determined to be 90 samples per hour.  相似文献   

5.
A highly sensitive method for the detection of 6‐mercaptopurine (MP) by resonance Rayleigh light scattering (RLS) method was developed. Gold nanoparticles (AuNPs) were synthesized by a modified seed method and characterized using transmission electron microscopy (TEM). AuNPs were bound to MP via covalent bonding to form the MP–AuNPs complex, which increased the RLS intensity of MP at 347 nm (increased by 65.7%). Under optimum conditions, the magnitude of the enhanced RLS intensity for MP–AuNPs was proportional to MP concentration in the range 0.0681–1.702 μg mL?1. The linear regression equation was represented as follows: ΔI RLS = 9.31 + 82.42c (r  = 0.9948). The limit of detection (LOD, 3σ) was 3.32 ng mL?1. The system was applied successfully to detect MP in pharmaceuticals. MP recoveries were 99.9–101.7% with a relative standard deviation (RSD) (n  = 5) of 0.59–0.77% for three synthetic samples, and 97.5–110.0% with an RSD of 0.98–2.10% (n =  5) for tablet samples.  相似文献   

6.
In weak acidic buffer medium, chitosan binding with an anionic surfactant, such as sodium dodecyl benzene sulphonate (SDBS), sodium lauryl sulphate (SLS) or sodium dodecyl sulphonate (SDS), can result in a significant enhancement of resonance Rayleigh scattering (RRS) intensity. The results showed that under optimum conditions the enhanced RRS intensity is proportional to the concentration of chitosan in the range 0.10–20.0 µg/mL for SDBS, 0.27–15.0 µg/mL for SLS and 0.20–15.0 µg/mL for SDS. Among these, the sensitivity of SDBS is the highest and its detection limit for chitosan is 29 ng/mL, while those of SLS and SDS are 83 and 61 ng/mL, respectively. The method has good selectivity and was applied to the determination of trace amounts of chitosan in practical samples with satisfactory results. Therefore, a simple and convenient method with high sensitivity and selectivity for the determination of chitosan was established. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A simple, sensitive and rapid flow injection analysis (FIA) method with resonance light scattering (RLS) was described for the determination of propafenone (PPF). The method was based on the ion‐association reaction of 12‐tungstophosphoric acid (TP) with propafenone. In pH 1.0 acidic medium, TP reacted with PPF to form an ion‐associate complex, which resulted in a significant enhancement of RLS intensity. The maximum scattering peak was located at 340 nm, the RLS intensity was proportional to the concentration of PPF in the range 0.003–9.0 µg/mL, and the detection limit (3σ) of 1.0 ng/mL was obtained at a sampling rate of 60 samples/h. The feasible reaction conditions and FIA parameters for the system were optimized. The method proposed in this paper shows satisfactory reproducibility with a relative standard deviation (RSD) of 2.1% for 10 successive determinations of 2.0 µg/mL PPF. The present method had been successfully applied to the determination of PPF in serum samples and pharmaceutical samples. The results obtained were in agreement with the method used in the Chinese Pharmacopoeia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A simple and sensitive resonance Rayleigh scattering (RRS) spectra method was developed for the determination of calf thymus DNA (ctDNA). The enhanced RRS signals were based on the interactions between ctDNA and aminoglycoside antibiotics (AGs) including kanamycin (KANA), tobramycin (TOB), gentamicin (GEN) and neomycin (NEO) in a weakly acidic medium (pH 3.3–5.7). Parameters influencing the method were investigated. Under optimum conditions, increments in the scattering intensity (?I) were directly proportional to the concentration of ctDNA over certain ranges. The detection limit ranged from 12.2 to 16.9 ng/mL. Spectroscopic methods, including RRS spectra, absorption spectra and circular dichroism (CD) spectroscopy, coupled with thermo‐denaturation experiments were used to study the interactions, indicating that the interaction between AGs with ctDNA was electrostatic binding mode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The interaction between cysteine and gold nanoparticles was studied. Through the covalent combination with the -SH group and the electrostatic binding with the -NH3+ group of cysteine, gold nanoparticles can self-assemble to form a network structure, which results in greatly enhanced resonance light scattering (RLS). The experimental results demonstrate that the RLS technique offers a sensitive tool for investigations of self-assembly of nanoparticles. On the other hand, the RLS method can be applied to selectively determine cysteine with high sensitivity and simple operation. The linear range of determination of cysteine is from 0.01 to 0.25 microg/mL with the detection limit of 2.0 ng/mL (16.5 nM, 3sigma). None of the amino acids found in proteins interferes with the determination.  相似文献   

10.
At pH 1.3–1.6, tungstate WO42–, can be converted to hexatungstate W6O192–, which can react with positively charged polymyxin B sulfate (PMB) to result in enhancement of resonance Rayleigh scattering (RRS) and resonance non‐linear scattering, including second order scattering and frequency doubling scattering. Linear relationships can be established between enhanced scattering intensity and PMB concentration. The detection limits (3σ) were 5.5 ng/mL (RRS), 10.1 ng/mL (second order scattering) and 34.6 ng/mL (frequency doubling scattering). The optimum reaction conditions, influencing factors and related analytical properties were tested. The interaction mechanism was investigated via absorption spectrum, circular dichroism spectra and atomic force microscopy imaging. The basis of scattering enhancement is discussed. PMB in eardrops, human serum and urine, were quantified satisfactorily by RRS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Doxepin hydrochloride (DOX) is a tricyclic antidepressant drug. Three sensitive spectrofluorimetric methods, namely resonance Rayleigh scattering (RRS), frequency doubling scattering (FDS) and second-order scattering (SOS), were developed and validated for their estimation of doxepin in spiked human plasma and formulation using liquid–liquid extraction method through the formation of an ion pair complex with eosin Y at a pH of 4.5. Various factors affecting fluorescence intensity were optimized, and the reaction kinetics was determined using the Arrhenius equation method. Different scattering methods such as RRS, FDS and SOS were developed at maximum scattering wavelengths λex/λem = 567/567 nm for RRS, 720/360 nm for SOS and 260/520 nm for FDS, respectively. The methods exhibited high sensitivities, and the detection limits for DOX were found to be 0.82, 1.20 and 1.03 ng/ml for RRS, FDS and SOS methods, respectively. The FDS method exhibited the highest sensitivity. The methods were validated using the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines and applied to determine DOX in capsule and spiked human plasma samples.  相似文献   

12.
Two methods were presented for the sensitive and selective determination of chitosan (CTS) with Congo red (CR) as probe based on resonance Rayleigh scattering (RRS) intensities in health products. In weakly acidic buffer solution, the binding of CTS to CR, could result in the enhancement of the RRS intensities. Moreover, after adding OP emulsifier (octyl‐phenyl polyoxyethylene ether) to the system, the RRS intensities showed more significantly enhancement. The maximum RRS signals for the CTS–CR system and the CTS–CR–OP system were located at 380 nm and 376 nm, respectively. Under optimum experimental conditions, the increased RRS intensities (ΔI) of these two systems were linear to CTS concentration in the range of 0.40–8.00 μg/ml and 0.05–1.00 μg/ml. Their limits of detection (LOD) were 44.81 ng/ml and 6.99 ng/ml, which indicated that the latter system was more sensitive than the former. In this work, the optimum conditions and the effects of some foreign substances on the determination were studied. In addition, the effect of the molecular weight of CTS and the reasons for the enhancement of resonance light scattering were discussed. Finally, these two methods were applied to the determination of chitosan in health products with satisfactory results.  相似文献   

13.
Resonance light scattering (RLS) of Congo red (CR) was greatly enhanced by BSA (HSA) in the presence of Triton X-100 (TX-100). In sodium citrate-HCl buffer (pH 2.7-3.0), the enhanced intensity of resonance light scattering at 360 nm was in proportion to the concentration of proteins [corrected] The linear relationship was obtained between the resonance light scattering intensity and proteins in the range 5.0 x 10(-8)-8.0 x 10(-6) g/mL and 1.0 x 10(-9)-6.0 x 10(-6) g/mL for BSA and HSA, respectively. Their detection limits were 1.4 x 10(-8) g/mL and 2.8 x 10(-10) g/mL (S:N = 3), respectively. Synthetic and actual samples were analysed satisfactorily.  相似文献   

14.
Laser light scattering has been employed to determine the swimming speed distribution and the fraction of motile cells in samples of bovine spermatozoa. As predicted from theory, average trajectory velocities determined by laser light scattering were approximately four times the average translational speed estimated using light microscopy. The proportion of motile spermatozoa decreased with time at the same rate when samples were prepared in either HEPES or phosphate buffers. However, whereas the mean swimming velocity declined slowly in HEPES buffer, it dropped rapidly when phosphate buffer was used. Dilution (in the range 40–0.4×106 spermatozoa·ml-1) in either of these two buffers reduced the fraction of motile spermatozoa in the sample, but the mean swimming velocity of the remaining active spermatozoa was unchanged. Lowering the temperature from 37° C to 15° C reduced the mean swimming speed by a factor of 2–3 and the fraction of motile cells by a factor of 4–5.  相似文献   

15.
Role of disulfide bridges in phytase's unfolding-refolding was probed using dynamic light scattering. Phytase was unfolded by guanidinium chloride and then refolded by removing the denaturant by dialysis. Thiol reagents prevented refolding; thus, disulfide bridge formation is an integral step in phytase folding. Catalytic demise of phytase after unfolding and refolding in presence of Tris(2-carboxyethyl)phosphine (TCEP) indicates that disulfide bridges are necessary for refolding. The hydrodynamic radius (rh) of active and unfolded phytase is 4 and 14 nm, respectively. Removal of denaturant through dialysis refolds phytase; its rh shifts back to 4 nm. When TCEP remains in the refolding media, the rh remains high. The unfolded phytase when diluted in assay medium refolds as a function of time at 25 and 37 degrees C, but not at higher temperature. Monitoring rh under denaturing and renaturing condition gives an accurate measure of the folding status of phytase.  相似文献   

16.
In weak acid medium, aluminum(III) can react with chlorophosphonazo III [CPA(III), H8L] to form a 1:1 coordination anion [Al(OH)(H4L)]2‐. At the same time, proteins such as bovine serum albumin (BSA), lysozyme (Lyso) and human serum albumin (HSA) existed as large cations with positive charges, which further combined with [Al(OH)(H4L)]2‐ to form a 1:4 chelate. This resulted in significant enhancement of resonance Rayleigh scattering (RRS), second‐order scattering (SOS) and frequency doubling scattering (FDS). In this study, we investigated the interaction between [Al(OH)(H4L)]2‐ and proteins, optimization of the reaction conditions and the spectral characteristics of RRS, SOS and FDS. The maximum RRS wavelengths of different protein systems were located at 357–370 nm. The maximum SOS and FDS wavelengths were located at 546 and 389 nm, respectively. The scattering intensities (ΔI) of the three methods were proportional to the concentration of the proteins, within certain ranges, and the detection limits of the most sensitive RRS method were 2.6–9.3 ng/mL. Moreover, the chelate reaction mechanism or the reasons for the enhancement of RRS were discussed through absorption spectra, fluorescence spectra and circular dichroism (CD) spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A Raman spectrometer and dynamic light scattering system were combined in a single platform (Raman–DLS) to provide concomitant higher order structural and hydrodynamic size data for therapeutic proteins at high concentration. As model therapeutic proteins, we studied human serum albumin (HSA) and intravenous immunoglobulin (IVIG). HSA concentration and temperature interval during heating did not affect the onset temperatures for conformation perturbation or aggregation. The impact of pH on thermal stability of HSA was tested at pHs 3, 5, and 8. Stability was the greatest at pH 8, but distinct unfolding and aggregation behaviors were observed at the different pHs. HSA structural transitions and aggregation kinetics were also studied in real time during isothermal incubations at pH 7. In a forced oxidation study, it was found that hydrogen peroxide (H2O2) treatment reduced the thermal stability of HSA. Finally, the structure and thermal stability of IVIG were studied, and a comprehensive characterization of heating-induced structural perturbations and aggregation was obtained. In conclusion, by providing comprehensive data on protein tertiary and secondary structures and hydrodynamic size during real-time heating or isothermal incubation experiments, the Raman–DLS system offers unique physical insights into the properties of high-concentration protein samples.  相似文献   

18.
A highly selective and sensitive method of reversed phase high‐performance liquid chromatography (RP‐HPLC) coupled with resonance Rayleigh scattering (RRS) was developed for the determination of procaine, bupivacaine and tetracaine. Separation of three local anaesthetics was achieved at 35 °C on a C18 column. The mobile phase was 30: 70 (v/v) acetonitrile/triethylamine–phosphoric acid buffer (pH 2.9) at flow rate of 0.3 mL/min. The RRS detection was conducted by taking advantage of the strong RRS enhancement of the local anaesthetics with erythrosine reaction in an acidic medium. Under optimum conditions, the limit of detection (S/N = 3) values were in the range of 2.4–11.2 ng/mL. Recoveries from spiked human urine samples were 95.8%–104.5%. The proposed method applied to the determination of local anaesthetics in human urine achieved satisfactory results. In addition, the mechanism of the reaction is fully discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Microscope laser light scattering spectroscopy of single biological cells   总被引:1,自引:0,他引:1  
A microscope laser light scattering setup was developed, allowing us to do intensity autocorrelation spectroscopy on the light scattered from a volume as small as (2 μm)3. This non-invasive technique makes cytoplasmic studies possible inside single live biological cells. The effect of osmotic swelling and shrinking on the diffusion coefficient of hemoglobin inside intact red blood cells is shown as an illustrative example of the applicability and sensitivity of this new experimental method.  相似文献   

20.
Proteins with predominantly hydrophobic character called amelogenins play a key role in the formation of the highly organized enamel tissue by forming nanospheres that interact with hydroxyapatite crystals. In the present investigation, we have studied the temperature and pH-dependent self-assembly of two recombinant mouse amelogenins, rM179 and rM166, the latter being an engineered version of the protein that lacks a 13 amino acid hydrophilic C-terminus. It has been postulated that this hydrophilic domain plays an important role in controlling the self-assembly behavior of rM179. By small-angle X-ray and neutron scattering, as well as by dynamic light scattering, we observed the onset of an aggregation of the rM179 protein nanospheres at pH 8. This behavior of the full-length recombinant protein is best explained by a core-shell model for the nanospheres, where hydrophilic and negatively charged side chains prevent the agglomeration of hydrophobic cores of the protein nanospheres at lower temperatures, while clusters consisting of several nanospheres start to form at elevated temperatures. In contrast, while capable of forming nanospheres, rM166 shows a very different aggregation behavior resulting in the formation of larger precipitates just above room temperature. These results, together with recent observations that rM179, unlike rM166, can regulate mineral organization in vitro, suggest that the aggregation of nanospheres of the full-length amelogenin rM179 is an important step in the self-assembly of the enamel matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号