首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to “surge alone” event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as “brick course” maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.  相似文献   

2.
嵇娟  陈军飞  丁童慧  李远航 《生态学报》2024,44(7):2772-2785
厘清城市洪涝韧性与生态系统服务之间耦合协调关系,可为城市防洪减灾和生态文明建设提供重要决策参考。综合运用基于麻雀算法的投影寻踪模型、InVEST模型和耦合协调度模型,在分析2000-2020年长三角城市群的城市洪涝韧性与水源涵养、水质净化、土壤保持和气候调节四种生态系统服务时空格局基础上,尝试探索两者耦合协调关系及其时空演变特征。研究发现:(1)长三角城市群的城市洪涝韧性水平呈现"N"型增加趋势,并呈现"上海>江苏>浙江>安徽"的空间格局,表明经济水平越高的城市展现出更强的洪涝韧性,经济是影响城市洪涝韧性波动的主要因素,而自然韧性成为城市洪涝韧性提升的关键短板;(2)生态系统服务存在显著的空间异质性,高植被覆盖的南部地区提供了更高的生态系统服务,从时间维度看其空间分布是稳定的,水源涵养和水质净化服务总体呈向好趋势,土壤保持服务整体呈现倒"N"型增加,气候调节服务呈现微弱的下降趋势;(3)城市洪涝韧性与生态系统服务的耦合协调度在研究期内较为稳定,且与生态系统服务的时空变化趋于一致,呈现"南高北低、由西南向东北逐渐减弱"的趋势,生态系统服务较高的城市,表现出更好的耦合协调性,且随着生态系统服务的增加而改善。因此,长三角城市群有必要从提高生态系统服务功能的角度出发,因地制宜、分类施策,促进城市洪涝韧性与生态系统服务的协调发展。  相似文献   

3.
基于水质管理目标的博斯腾湖生态水位研究   总被引:3,自引:0,他引:3  
人类开发活动导致湖泊生态功能严重退化,研究湖泊生态水位对于维持湖泊生态系统健康意义重大。针对博斯腾湖化学需氧量(COD)浓度较高的水环境现状,分析博斯腾湖水位和COD浓度关系,研究提出基于水质管理目标的生态水位,以期为博斯腾湖水资源、水环境管理提供参考。结果表明,博斯腾湖水位与水体COD浓度显著负相关,但由于COD浓度空间差异较大以及影响因素不唯一,水位与COD浓度两者之间曲线估计结果不理想。为实现博斯腾湖COD浓度小于20 mg/L的水质管理目标,引入累计水位概念进行统计分析得到两个特征水位:所有COD浓度大于等于20 mg/L的数据对应水位的平均值为1046.02 m,该水位在历史丰水期水位的频率为60.83%,可作为最小生态水位;所有COD`浓度小于等于20 mg/L的数据对应水位的平均值为1046.4 m,该水位在历史丰水期水位的频率为44.70%,可作为适宜生态水位。适宜生态水位1046.4 m与已有研究成果基本相符,博斯腾湖在1046.4 m时既有利于水质管理,也可保障湖泊整体生态系统健康。  相似文献   

4.
洞庭湖区灾害性洪水对生态灾害群发的复合效应   总被引:3,自引:0,他引:3  
灾害性洪水的能量传播与它挟带的泥沙淤积,是诱发洞庭湖区生态灾害的直接和潜伏条件,从而形成了灾害链和灾害网,而不同类型洲滩地的机械阻挡,永生植物阻流促淤及长江洪水顶托的综合作用,改变了湖泊水动力条件与泥沙之间互为因果的关系,导致了洪水泛滥、泥沙淤积,洲滩地浮涨,生态灾害群发的恶性循环,其复合效应是水灾、沙灾、血吸虫病、鼠灾等生态灾害群发频繁且灾情日趋严重。  相似文献   

5.
降雨和景观格局是影响流域径流过程的两大主要因素,开展二者的径流效应研究对流域水资源管理、生态建设等具有重要意义。本研究以赣南红壤丘陵区的濂水流域为对象,基于1958—2020年的降雨、径流和土地利用数据,分析降雨、景观格局和径流的变化特征,以及降雨、景观格局与年径流、洪枯径流的关系。结果表明: 研究期间,流域年降雨量、年径流量、年最大1 d径流量均呈非显著下降趋势,年最小1 d径流量呈非显著上升趋势且年际变化幅度最大;有林地为流域内占比最高的景观类型,其他林地的变化最剧烈;景观水平上,流域的Shannon多样性指数、Shannon均匀度指数、斑块密度、景观形状指数分别由1980年的1.125、0.541、0.667、16.925上升至2020年的1.348、0.614、0.731、18.172,景观蔓延度指数由1980年的68.237下降至2020年的64.293,流域整体景观多样性、破碎化程度、形状复杂程度提高,空间分布趋于均匀,连通性降低。降雨量与年径流、洪水径流、枯水径流的相关系数分别为0.907、0.594、0.558;类型水平上,耕地减少对年径流、洪枯径流的影响均较大,而景观水平上的整体变化促进了年径流和洪水径流减少、枯水径流增加。降雨变化和景观格局演变对年径流、洪水径流和枯水径流变化的贡献率分别为17.8%、82.2%,1.5%、98.5%和-8.8%、108.8%。研究成果可为流域景观格局配置、水土流失综合治理等提供理论参考。  相似文献   

6.
The drift of organisms and large particulate organic matter >200 μm (LPOM) was investigated during a single receding flood event from 16 to 23 June 1989 in a second order, calcareous, alpine, gravel brook. Starting with the peak level of the hydrograph, which was well above bankfull level, sampling lasted for five days (= 8 sampling dates). Between four and eight replicates were taken at each sampling date. No significant differences (P < 0.05) could be detected in the proportion of the main aquatic taxa (excluding miscellaneous taxa) drifting during above versus below bankfull water levels. However, terrestrial taxa were significantly (P < 0.05) over-represented (23–25% of the total) at flood peak and a small secondary flood peak four days later. In addition, aquatic taxa which normally are scarce in drift samples at the Seebach (e.g. oligochaetes, ostracods) were abundant during the receding main flood event. Above bankfull stage (water level ⩾ 70 cm), animal drift densities were significantly (P < 0.01) and up to 22-times higher (e.g. 45.6 individuals m−3) than during baseflow (e.g. 2.1 individuals m−3). Below bankfull stage, drift densities remain constant, independent of water discharge (Student-Newman-Keuls test; P < 0.01). In LPOM drift, this ratio was nearly 100: 1, with drift values ranging from 1.83 g dry weight m−3 at flood peak to 0.02 g dry weight m−3 at baseflow. Drift densities of animals and LPOM exhibited a positive exponential relationship with water level. Drift rates of anmimals and LPOM ranged from 3200700 individuals and 148.9 kg dry weight per hour at flood peak to 17440 individuals and 0.2 kg dry weight per hour at baseflow. During a single receding flood (water level ⩾ bankfull) significantly more organisms and LPOM were transported than during a whole year at baseflow discharge.  相似文献   

7.
Lake littoral zones have a transitional nature and dynamic conditions, which are reflected in their CH4 emissions. Thus, detailed studies are needed to assess the littoral CH4 emissions in a regional scale. In this study, CH4 fluxes were followed during the ice‐free seasons in 1998 and 1999 by using the static chamber method in the littoral zone of two lakes in Finland. An exceptionally high water level in 1998 caused an unusually long inundation in otherwise ephemerally flooded zone. The flooding was normal in year 1999. The factors controlling CH4 emissions were examined and statistical response functions were constructed. Further, the effect of extended flooding on the littoral CH4 budged was estimated. The methane flux was primarily regulated by the water level in grass and sedge dominated eulittoral zone, but not in infralittoral reed and water lily stands. Methane emissions in the sedge dominated zone decreased significantly, when the flood was high enough to submerge the venting structures of the plants. Besides water level, sediment temperature determined CH4 emission. The cumulative CH4 emissions from the whole littoral wetlands in wet year were 1.1 times (L. Kevätön), or 0.61 and 0.79 times (L. Mekrijärvi) those in dry year. The crucial factor was the discrepancy between the exceptional and the average water level. The extension of inundated area does not necessarily increase CH4 emissions if the flood reaches infrequently inundated areas, which apparently have low CH4 production potential. This is the case especially, if the emissions in lower zones simultaneously decrease due to high water level. Our study analyses these complex responses between CH4 emissions and water level.  相似文献   

8.
Activity and choice of areas offering different cover (substratum or surface ice) for juvenile Atlantic salmon Salmo salar were studied in experimental stream channels during winter. Channels were completely ice covered between December and March. During this period, the ice thickness increased from 50 to 300 mm after which 50% of the ice was experimentally removed and followed by c. 2·5-fold increase in discharge to simulate the effects of spring flood. Large substrata provided preferred habitats but areas with small substratum sizes were also used when full surface ice provided above-stream cover and the stream discharge was relatively low. The fish remained nocturnal throughout the study but the level of day activity significantly increased as the surface ice became thicker. Maximum movement distance during a 24 h period and homing-at-dawn behaviour remained at a constant level throughout the main winter, but significantly changed during the simulated spring flood (mean ± s . e . maximum extent of movements within 24 h increased from 1·1 ± 0·1 to 3·0 ± 0·5 m; homing behaviour decreased from the highest level of 89·3 to 34·6% during spring flood). Overwinter survival was high (92·9%). Relative mass increase during the study ranged from –8·3 to 28·5%, and 84% of the juvenile Atlantic salmon gained mass. The highest rates of mass increase were associated with frequent movements between areas of different substratum size. The results indicate that during winter: (1) Atlantic salmon parr preferred large substratum cover compared with surface ice cover at the fish densities studied here, (2) juvenile Atlantic salmon were predominantly nocturnal but diurnal activity increased as surface ice became thicker and (3) increase in water discharge during spring altered the behaviour of juvenile Atlantic salmon and may have caused additional habitat shifts.  相似文献   

9.
三峡濒危植物疏花水柏枝的回归引种和种群重建   总被引:3,自引:0,他引:3  
疏花水柏枝分布于三峡库区原海拔70~155m的消落带,三峡工程修建后它将丧失其全部生境而成为濒危植物。实验结果显示其种子在土壤含水量大于10%以上时开始萌发,以土壤含水量达到饱和状况时萌发最好。种子萌发与定居阶段对土壤水分条件的严格要求使得疏花水柏枝分布区十分狭小。回归引种和种群重建是拯救该物种的主要手段。三峡工程修建后库区内新的消落带将形成夏旱冬淹的水节律,完全不同于库区原有消落带所具有的冬旱夏淹的水节律,不适于作为疏花水柏枝种群的迁移地。相比之下库区淹没区以上各支流消落带的生态环境与疏花水柏枝原有生境较为接近,适于作其新的生境。种群遗传多样性、年龄结构、分布格局、繁殖与扩展等生物学特性是种群持续发展的基础,文章以此为依据,对疏花水柏枝种群重建与管理中的相关问题进行了分析讨论。认为疏花水柏枝种群恢复与重建中目前所面临的主要问题是如何增强被隔离的种群间的基因交流、促进种群的种子扩散与萌发、协调新建种群与当地物种的关系、营造有利于新建种群定居与生长的生态环境。重建种群的管理应结合疏花水柏枝的生长发育节律和移栽地的生态环境条件来开展,要有效地监控种群的生长发育动态,合理地在隔离种群间相互引种,适时地进行水分管理,并对周围植被适度控制。  相似文献   

10.
Summary

Wetland fish stocks can usually be sustained as long as the natural flood regime is maintained, but unnatural disruption of the flooding pattern can interfere with fish spawning and feeding. The dynamics of the Phongolo floodplain fish community are determined by periodically changing abiotic factors, especially water level and water temperature, and biotic factors, especially food availability. Water level fluctuations have several important functions and result in pulses of nutrient input and fish abundance. This paper examines the implications of the timing, magnitude and duration of simulated flood releases from the Pongolapoort Dam on the downstream fish and fishery.  相似文献   

11.
In the past decade, extreme hydrological events were expressed with extreme droughts and floods in temperate regions. The aim of this paper is to explain how such changes in hydrology can influence cyanobacterial populations in floodplain ecosystems. We therefore analyzed a 6-year (2003–2008) study of the phytoplankton in the Kopački Rit floodplain, one of the largest natural floodplains in the middle section of the Danube River (Europe). During the studied period, the shallow floodplain lake shifted between a state of turbid water, characterized by high phytoplankton biomass and regular appearance of cyanobacteria blooms, to a state of clear water with very low phytoplankton biomass and absence of cyanobacteria, and back to the turbid state. Apparently, the major forces driving the cyclic shift were closely related to extremely high and long-lasting flood events. Significant increase in water level, low hydraulic residence time of water, decrease in transparency and low-light climate, together with mass developed aquatic macrophyte vegetation in the whole inundated floodplain were unfavorable conditions for growth and proliferation of cyanobacteria. With the establishment of the flood regime characterized by long-lasting periods without flooding, in-lake processes prevailed leading to cyanobacterial bloom. The most successful were filamentous non-N-fixing cyanobacteria tolerant to mixed and low-light conditions (Planktothrix and Limnothrix) and invasive species Cylindrospermopsis raciborskii. Their massive development led to the establishment of a phytoplankton steady state. All our results demonstrate that the altered intensity and frequency of flood events will have pronounced effects on the appearance of cyanobacterial blooms and generally on alternative stable states in the floodplain. Relating to this, management objectives should be focused on qualifications of changes in hydrology and projecting those effects for potential floodplain restoration.  相似文献   

12.
For two years (2002, 2003) selective feeding ecology of the common carp (Cyprinus carpio L.) has been studied in carp-integrated rice fields in Apatani Plateau of Arunachal Pradesh (India). Sampling strategy was based on the water depths in the fields and on the flood phases: early flood phase (June–July), mid flood phase (July–August), and late flood phase (September–October). In 2003 the water level was higher and therefore periphyton availability was better. This resulted in larger gut contents and better growth of the carp compared with 2002 when the water levels were lower. Gut contents analyses revealed a total of 60 food items of which 22 belonged to the Chlorophycea, 12 to the Cyanobacteria, 10 to the Bacillariophycea and 16 to several zooplankton taxa. With the progress of flood phases, the fish increased its feeding on periphyton food items; simultaneously, feeding on plankton items gradually declined. This was caused by the increasing periphyton availability on the rice-stems. Selective feeding on plankton and periphyton taxa was studied, selectivity changed with the flood phases. Periphytic Chlorophycea and Cyanobacteria, especially, were strongly positively selected. Generally, periphyton was the most important resource for the common carp in the rice fields.  相似文献   

13.
Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here, we provide a systems‐level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using 6 years of continuous crop and soil measurements in corn‐ and soybean‐based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region, 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern United States is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and environmental performance of cropping systems.  相似文献   

14.
River flooding is important for the ecological functioning of river floodplains. It is implicitly assumed that in many river floodplains during floods, river water is spreading all over the floodplain. We hypothesize that during flood events a spatial distribution of water types exists, which is correlated to different water sources (river water, atmospheric water and groundwater) and to the spatial distribution of vegetation types. The objective of this paper is to assess a new methodology to determine the extent of flooding and the spatial distribution of different water sources during the flood, using GPS, multispectral remote sensing and hydrochemical analyses. This methodology is applied to the Biebrza River Lower Basin, which has little human impact. Remote sensing resulted in a map distinguishing inundated areas from dry areas, which showed 85% agreement with GPS field measurements. Principal Component Analyses and Cluster Analyses on the measured water chemistry identified different water sources during the flood (river water, groundwater, rainwater) and showed the effects of human impact on water quality. River flood water dominated the entire inundation zone in the northern Lower Basin, which is narrower and steeper than the southern Lower Basin where groundwater and rainwater were significant contributors to the major part of the inundated area. Vegetation in the river flood zone is distinctly different from the rest of the floodplain. Due to mixing of ground- and rainwater, correlation analyses between vegetation and water type were not possible outside the river flood zone. The new methodology is effective in distinguishing inundated areas from dry regions and in separating river flood water from other water sources during a flood.  相似文献   

15.
16.
I studied the movements of adult Japanese fluvial sculpin, Cottus pollux, in a Japanese mountain stream. An exceptionally severe flood in late September had negative impacts on refuge abundance, condition and population density of the sculpin. The mean distance moved monthly correlated positively with water discharge, but not with water temperature or with population density. Overall, the mean distance sculpins moved after the flood was significantly greater than before the flood, and sculpins tended to move into riffle-raceways after the flood. Comparisons of refuge-site limitation for adults and water depths between habitats indicated that the flood affected riffle-raceways less than pools. Fish in poorer conditions were likely to move extensively, and the condition of fish captured initially in pools deteriorated more significantly than that of sculpins captured in riffle-raceways. Movement bias into riffle-raceways by the sculpins after the flood suggests they sought suitable habitat with available refuges. The results suggest vulnerability to flood disturbance of the sculpins inhabiting the interstitial spaces of the substrate.  相似文献   

17.
Effects of flood on the functioning of the Dobczyce reservoir ecosystem   总被引:2,自引:0,他引:2  
Godlewska  M.  Mazurkiewicz-Boroń  G.  Pociecha  A.  Wilk-Woźniak  E.  Jelonek  M. 《Hydrobiologia》2003,504(1-3):305-313
The effects of two summer floods, in 1997 and 2001 on phytoplankton, zooplankton and fish in the Dobczyce reservoir are presented. Shifts in phytoplankton distribution (from hypolimnion into the whole water column) and species composition (domination of diatoms after the flood) were observed. High water flow eliminated large species of cladocerans and copepods (the most effective filtrators) and favoured development of rotifers. Both, the total zooplankton biomass and chlorophyll a concentration after the flood dropped considerably. In the case of fish, the observed changes in their distribution and decrease in concentration were attributed to their behaviour. During the flood, fish were avoiding open water also during the night, but two weeks following the flood they returned to their usual migratory behaviour. The Dobczyce reservoir ecosystem showed great regeneration abilities to recover after the flood.  相似文献   

18.
Bates AJ  Sadler JP  Fowles AP 《Oecologia》2006,150(1):50-60
In common with many habitat elements of riverine landscapes, exposed riverine sediments (ERS) are highly disturbed, naturally patchy and regularly distributed, whose specialists are strongly adapted to flood disturbance and loss of habitat due to succession. Investigations of dispersal in ERS habitats therefore provide an important contrast to the unnaturally fragmented, stable systems usually studied. The present investigation analysed the three interdependent stages of dispersal: (1) emigration, (2) inter-patch movement and (3) immigration of a common ERS specialised beetle, Bembidion atrocaeruleum (Stephens 1828) (Coleoptera, Carabidae), in a relatively unmodified section of river, using mark–resight methods. Dispersal was correlated with estimates of local population size and density, water level and patch quality in order to test for condition-dependent dispersal cues. Flood inundation of habitat was found to increase strongly the overall rate of dispersal, and the rate of emigration was significantly higher from patches that were heavily trampled by cattle. Strongly declining numbers of dispersers with distance suggested low dispersal rates during periods of low water level. Dispersal in response to habitat degradation by cattle trampling would likely lead to a higher overall population fitness than a random dispersal strategy. Dispersal distances were probably adapted to the underlying habitat landscape distribution, high-flow dispersal cues and ready means of long-distance dispersal through hydrochory. Species whose dispersal is adapted to the natural habitat distribution of riverine landscapes are likely to be strongly negatively affected by reduced flood frequency and intensity and habitat fragmentation through flow regulation or channelisation.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

19.
20.
广州市典型绿地土壤水分入渗特征   总被引:3,自引:0,他引:3  
杜建会  方政  林志斌 《生态学报》2021,41(24):9869-9877
绿地对于缓解城市洪涝灾害具有非常重要的作用,对其土壤入渗的定量化研究是评价城市绿地雨洪调蓄能力的关键。受城市土壤空间异质性的影响,不同功能区绿地土壤水分入渗速率的差异较大。采用双环入渗仪对广州海珠国家湿地公园典型乔草和灌草绿地的土壤水分入渗特征进行测定,并对其影响因素进行分析,结果表明:(1)广州海珠国家湿地公园的绿地土壤水分入渗性能处于中等至较高水平,但受机械和人为压实作用,绿地土壤容重偏大,总孔隙率偏低,加上外来客土影响,土壤物理性黏粒含量高,且有人为侵入体混入等,从而抑制了绿地表层土壤的水分入渗;(2)灌草相对于乔草对绿地表层土壤水分入渗的改善更为明显,这主要与前者的根系分布较浅有关,此外灌草绿地的凋落物更易留存,且其细根分解较快,这均有助于表层土壤有机质的及时返还,从而促进了绿地表层土壤的水分入渗;(3)广州海珠国家湿地公园绿地土壤的水分累积入渗量随时间变化更符合Kostiakov模型。未来广州市绿地的建设及管理应减少土壤压实及外来客土混入,适当增加灌草比例,使其兼顾旅游休闲和雨洪蓄积功能,从而有助于海绵城市的高效建设。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号