首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Aggregation of the nicotinic acetylcholine receptor (AChR) at sites of nerve-muscle contact is one of the earliest events to occur during the development of the neuromuscular junction. The stimulus presented to the muscle by nerve and the mechanisms underlying postsynaptic differentiation are not known. The purpose of this study was to examine the distribution of phosphotyrosine (PY)-containing proteins in cultured Xenopus muscle cells in response to AChR clustering stimuli. Results demonstrated a distinct accumulation of PY at AChR clusters induced by several stimuli, including nerve, the culture substratum, and polystyrene microbeads. AChR microclusters formed by external cross- linking did not show PY colocalization, implying that the accumulation of PY in response to clustering stimuli was not due to the aggregation of basally phosphorylated AChRs. A semi-quantitative determination of the time course for development of PY labeling at bead contacts revealed early PY accumulation within 15 min of contact before significant AChR aggregation. At later stages (within 15 h), the AChR signal came to approximate the PY signal. We have reported the inhibition of bead-induced AChR clustering in response to beads by a tyrphostin tyrosine kinase inhibitor (RG50864) (Peng, H. B., L. P. Baker, and Q. Chen. 1991. Neuron. 6:237-246). RG50864 also inhibited PY accumulation at bead contacts, providing evidence for tyrosine kinase activation in response to the bead stimulus. These results suggest that tyrosine phosphorylation may play an important role in the generative stages of cluster formation, and may involve protein(s) other than or in addition to AChRs.  相似文献   

4.
The assembly of the nicotinic acetylcholine receptor (AChR), an oligomeric cell surface protein, was studied in cultured muscle cells. To measure this process, the incorporation of metabolically labeled alpha-subunit into oligomeric AChR was monitored in pulse-chase experiments, either by the shift of this subunit from the unassembled (5 S) to the assembled (9 S) position in sucrose density gradients, or by its coprecipitation with antisera specific for the delta-subunit. We have found that AChR assembly is initiated 15-30 min after subunit biosynthesis and is completed within the next 60 min. The alpha-subunit is not overproduced, as all detectable pulse-labeled alpha-subunit can be chased into the oligomeric complex, suggesting that AChR assembly in this system is an efficient process. The rate of AChR assembly is decreased by metabolic inhibitors and by monensin, an ionophore that impairs the Golgi apparatus. We have observed that the gamma- and delta-subunits of AChR are phosphorylated in vivo. The delta-subunit is more highly phosphorylated in the unassembled than in the assembled state, indicating that its phosphorylation precedes assembly and that its dephosphorylation is concomitant with AChR assembly. These findings suggest that subunit assembly occurs in the Golgi apparatus and that phosphorylation/dephosphorylation mechanisms play a role in the control of AChR subunit assembly.  相似文献   

5.
The structure of regions with a high concentration of ACh receptors (clusters) on cultured skeletal muscle myotubes was examined by immunoperoxidase staining of bound alphaBT. The clusters did not appear to differ from the other regions except in their higher concentration of receptor.  相似文献   

6.
Agrin activation of muscle specific kinase (MuSK) initiates postsynaptic development on skeletal muscle that includes the aggregation of acetylcholine receptors (AChRs; Glass et al. [1996]: Cell 85: 513-523; Gautam et al. [1996]: Cell 85: 525-535). Although the agrin/MuSK signaling pathway remains largely unknown, changes in intracellular calcium levels are required for agrin-induced AChR aggregation (Megeath and Fallon [1998]: J Neurosci 18: 672-678). Here, we show that L-type calcium channels (L-CaChs) are required for full agrin-induced aggregation of AChRs and sufficient to induce agrin-independent AChR aggregation. Blockade of L-CaChs in muscle cultures inhibited agrin-induced AChR aggregation but not tyrosine phosphorylation of MuSK or AChR beta subunits. Activation of L-CaChs in the absence of agrin induced AChR aggregation but not tyrosine phosphorylation of MuSK or AChR beta subunits. Agrin responsiveness was significantly reduced in primary muscle cultures from the muscular dysgenesis mouse, a natural mutant, which does not express the L-CaCh. Our results establish a novel role for L-CaChs as important sources of the intracellular calcium necessary for the aggregation of AChRs.  相似文献   

7.
The postsynaptic membrane from Torpedo electric organ contains, in addition to the acetylcholine receptor (AChR), a major peripheral membrane protein of approximately 43,000 mol wt (43K protein). Previous studies have shown that this protein is closely associated with AChR and may be involved in anchoring receptors to the postsynaptic membrane. In this study, binding sites for monoclonal antibodies (mabs) to the 43K protein have been compared to the distribution of AChR in Xenopus laevis muscle cells in culture. In double label immunofluorescence experiments, clusters of AChR that occur spontaneously on these cells were stained with anti-43K mabs. Newly formed receptor clusters induced with positive polypeptide-coated latex beads were also stained with anti-43K mabs as early as 12 h after the application of the beads. Exact correspondence in the distribution of the anti-43K protein binding sites and the AChR was found in both types of clusters. These results suggest that the 43K protein becomes associated with AChR clusters during a period of active postsynaptic membrane differentiation. Thus, this protein may participate in the clustering process.  相似文献   

8.
The nuclei of cultured noninnervated muscle cells are heterogeneous with respect to production of mRNA for the nicotinic acetylcholine receptor (AChR). Some nuclei actively express AChR mRNA while others have a low level of activity or are inactive. To determine if innervation, or a factor released by neurons, influences nuclear expression of AChR mRNA, we examined mRNA at a single cell level via in situ hybridization and autoradiography with an alpha-subunit AChR genomic probe. Four days after plating, we co-cultured chicken primary muscle cells with spinal cord explants, ciliary neurons, or dorsal root ganglia (DRG) cells. In situ hybridization of the spinal-cord and muscle-cell co-cultures with the AChR alpha-subunit probe revealed a high density of silver grains on muscle cells, which were within two explant diameters of the spinal cord explant, and a graded decrease in silver grain density as the distance from the explant increased, as well as the appearance of a strikingly nonhomogenous distribution of active and inactive muscle cell nuclei. When ciliary neurons were uniformly distributed over the muscle cells, a high level of AChR mRNA was induced, but no gradients appeared. Neither an increased mRNA level nor a gradient was observed when DRG cells were co-cultured with muscle cells. When ciliary neurons are cultured within Costar permeable inserts, which prevent any contact between the neurons and the underlying muscle cells, AChR messenger RNA is still induced, showing that diffusible factors are responsible. Our results indicate that molecules released by cholinergic neurons regulate the expression of AChR mRNA in the myotubes and raise the possibility that AChR expression depends on both neuronal signals and on intracellular information from the muscle cell.  相似文献   

9.
In Vitro Cellular & Developmental Biology - Plant - The involvement of endocytosis in Na+ internalization by suspension-cultured Arabidopsis thaliana (L.) Heynh. cells under salt stress was...  相似文献   

10.
To learn more about the pathway for degradation of an intrinsic membrane protein, we studied in cultured chick myotubes the effects of certain protease inhibitors and chloroquine (an inhibitor of lysosomal function) on degradation of the acetylcholine receptor measured with the specific ligand 125I-α-bungarotoxin. Leupeptin, chymostatin, anti-pain and chloroquine decreased by 2–10 fold the rate of degradation of the acetylcholine receptor-125I-α-bungarotoxin complex to 125I-tyrosine (p < 0.01). After removing the inhibitors, the degradative rate returned to control levels. Leupeptin and chloroquine did not appear toxic to the cells; these agents did not alter the overall rate of protein synthesis, and leupeptin did not decrease the incorporation of receptors into the surface membrane. Therefore these inhibitors probably inhibit the degradative process selectively. A lysosomal site for receptor degradation appears probable, since chloroquine slows this process; leupeptin, chymostatin and antipain all inhibit cathepsin B; and chloroquine and to a lesser extent leupeptin altered the ultrastructural appearance of this organelle. Cultures labeled with 125I-α-bungarotoxin and then incubated with leupeptin or chloroquine contained more radioactive protein than control cells. This material co-electrophoresed with bungarotoxin on sodium dodecylsulfate-urea-polyacrylamide gels. Thus myotubes exposed to these inhibitors seemed to accumulate undegraded bungarotoxin. They did not, however, contain more acetylcholine receptors on their surface. Instead, the inhibitor-treated cells accumulate toxin and receptors at some internal site. Thus treatment with such inhibitors does not appear to be a useful approach to the therapy of myasthenia gravis. The additional 125I-toxin found in cells incubated with leupeptin or chloroquine was less accessible to exogenous protease than the toxin bound to control cells and was more resistant to extraction by Triton X-100. Since internalization of the receptor continued in the presence of these inhibitors, this process must not be coupled tightly to subsequent proteolysis. Measurement of receptors within cells not exposed to 125I-α-bungarotoxin showed that incubation of myotubes with leupeptin or chloroquine for 48 hr increased the number of internal bungarotoxin-binding sites 2–11 fold (p < 0.001). Thus cells treated with these agents accumulate receptors intracellularly in a form that sediments at 35,000 × g. Electron microscopy showed that these treated myotubes contain 3–6 times more coated vesicles within their cytoplasm than control cells (p < 0.001). Thus chloroquine and leupeptin may retard receptor degradation in part by interfering with the fusion of coated vesicles with lysosomes.  相似文献   

11.
During the development of the neuromuscular junction, acetylcholine receptors (AChRs) become clustered in the postsynaptic membrane in response to innervation. In vitro, several non-neuronal stimuli can also induce the formation of AChR clusters. DC electric field (E field) is one of them. When cultured Xenopus muscle cells are exposed to an E field of 5-10 V/cm, AChRs become clustered along the cathode-facing edge of the cells within 2 h. Recent studies have suggested the involvement of tyrosine kinase activation in the action of several AChR clustering stimuli, including nerve, polymer beads, and agrin. We thus examined the role of tyrosine phosphorylation in E field-induced AChR clustering. An antibody against phosphotyrosine (PY) was used to examine the localization of PY-containing proteins in E field-treated muscle cells. We found that anti-PY staining was colocalized with AChR clusters along the cathodal edge of the cells. In fact, cathodal PY staining could be detected before the first appearance of AChR clusters. When cultures were subjected to E fields in the presence of a tyrosine kinase inhibitor, tyrphostin RG-50864, cathodal AChR clustering was abolished with a half maximal inhibitory dosage of 50 microM. An inactive form of tyrphostin (RG-50862) had no effect on the field-induced clustering. These data suggest that the activation of tyrosine kinases is an essential step in E field-induced AChR clustering. Thus, the actions of several disparate stimuli for AChR clustering seem to converge to a common signal transduction mechanism based on tyrosine phosphorylation at the molecular level.  相似文献   

12.
In the studies reported here, we investigated whether the degradation of the acetylcholine receptor (AChR) in cultured muscle cells involves similar mechanisms as and is controlled in a manner similar to, the catabolism of the bulk of cell protein. We compared these processes after labeling cell protein with radioactive leucine or phenylalanine for 24 hours, or labeling the acetylcholine receptor with (125I)-bungarotoxin. The apparent average half-life of cell protein was 38 ± 2 hours and that of the receptor-toxin complex was 25 ± 1 hours. Incubation in media lacking serum and embryo extract accelerated the degradation of both average protein and the receptor-toxin complex. Insulin reduced the rate of catabolism of both average protein and the receptor-toxin complex toward levels seen in the presence of serum. However, although these two degradative processes seem to be controlled similarly, they probably involve different mechanisms. The protease inhibitors leupeptin and chymostatin, which slowed overall proteolysis in nongrowing muscles and hepatocytes, reduced the degradation of the ACh receptor by 2–11-fold, but had no, or only slight, effects on the catabolism of average protein, even when overall proteolysis was accelerated by omitting serum and embryo extract. Chloroquine, an inhibitor of lysosomal function, also reduced the degradation of AChR, by about 10-fold, but decreased overall protein breakdown by only 20–30%. Incubation of myotubes at lower temperatures reduced both degradative processes, but affected the breakdown of the receptor to a greater extent. Thus the rate-limiting steps in these processes have different activation energies. Incubation with 2-deoxyglucose, an inhibitor of glycolysis, decreased the breakdown of average protein but not that of the receptor-toxin complex. However, the two degradative processes were sensitive to azide, an inhibitor of oxidative phosphorylation. Although the lysosome is the primary site for AChR degradation and perhaps for degradation of other surface proteins, the breakdown of most proteins in myotubes seems to involve a distinct proteolytic system requiring metabolic energy.  相似文献   

13.
The acetylcholine receptor (AChR) synthesis, insertion and degradation rates are regulated by numerous intracellular and extracellular agents. Recent studies have shown that Ca2+ and Ca2+ ionophores have a profound regulatory effect on the appearance of AChR clusters and AChR synthesis. These regulatory effects may be mediated through the activation of calcium and phospholipid-dependent protein kinases by agents such as phorbol esters. In this study, we have utilized 4-beta-phorbol-12-myristate-13-acetate (PMA) in order to determine whether the activation of protein kinase C exerts a regulatory effect on the expression of AChRs in cultured chick myotubes. Our results show that 4-beta-phorbol-12-myristate-13-acetate decreased intracellular AChRs and suppressed AChR synthesis without affecting the turnover rate. Control and PMA treated cells labeled with [35S] methionine and immunoprecipitated with a monoclonal antibody to the alpha subunit of AChRs (mAb35) revealed a significant decrease in radioactivity precipitated after exposure to PMA. Polyacrylamide gel electrophoresis revealed no major changes in protein patterns, or in newly synthesized proteins as determined by [35S] methionine incorporation and autoradiography. Other enzymes important in muscle metabolism were not affected by PMA treatment. Our results indicate that activation of protein kinase C results in the suppression of AChRs synthesis and dispersal of AChR clusters.  相似文献   

14.
The molecular control of the distribution and motion of acetylcholine receptors in the plasma membrane of developing rat myotubes in primary cell culture was investigated by fluorescence techniques. Acetylcholine receptors were marked with tetramethylrhodamine-labeled α-bungarotoxin and lateral molecular motion in the membrane was measured by the fluorescence photobleaching recovery technique. Three types of experiments are discussed: (I) The effect of enzymatic cleavages, drugs, cross-linkers, and physiological alterations on the lateral motion of acetylcholine receptors and on the characteristic distribution of acetylcholine receptors into patch and diffuse areas. (II) Observation of the distribution and/or motion of fluorescence-labeled concanavalin A receptors, lipid probes, cell surface protein, and stained cholinesterase in acetylcholine receptor patch and diffuse areas. (III) The effect of a protein synthesis inhibitor and electrical stimulation on membrane incorporation of new acetylcholine receptors.Some of the main conclusions are: (a) acetylcholine receptor lateral motion is inhibited by concanavalin A plant lectin and by anti-α-bungarotoxin antibody, but marginally enhanced by treatment with a local anesthetic; (b) patches are stabilized by an immobile cellular structure consisting of molecules other than the acetylcholine receptors themselves; (c) this structure is highly selective for acetylcholine receptors and not for other cell membrane components; (d) acetylcholine receptor patch integrity and diffuse area motion are independent of direct metabolic energy requirements and are sensitive to electrical excitation of myotube; (e) lipid molecules can move laterally in both acetylcholine receptor patches and diffuse areas; and (f) acetylcholine receptor lateral motion in diffuse areas and immobility in patch areas are not altered by specific agents which are known to affect extrinsic cell surface proteins, or cytoplasmic microfilaments and microtubules.  相似文献   

15.
We have investigated the mechanisms of assembly and transport to the cell surface of the mouse muscle nicotinic acetylcholine receptor (AChR) in transiently transfected COS cells. In cells transfected with all four subunit cDNAs, AChR was expressed on the surface with properties resembling those seen in mouse muscle cells (Gu, Y., A. F. Franco, Jr., P.D. Gardner, J. B. Lansman, J. R. Forsayeth, and Z. W. Hall. 1990. Neuron. 5:147-157). When incomplete combinations of AChR subunits were expressed, surface binding of 125I-alpha-bungarotoxin was not detected except in the case of alpha beta gamma which expressed less than 15% of that seen with all four subunits. Immunoprecipitation and sucrose gradient sedimentation experiments showed that in cells expressing pairs of subunits, alpha delta and alpha gamma heterodimers were formed, but alpha beta was not. When three subunits were expressed, alpha delta beta and alpha gamma beta complexes were formed. Variation of the ratios of the four subunit cDNAs used in the transfection mixture showed that surface AChR expression was decreased by high concentrations of delta or gamma cDNAs in a mutually competitive manner. High expression of delta or gamma subunits also each inhibited formation of a heterodimer with alpha and the other subunit. These results are consistent with a defined pathway for AChR assembly in which alpha delta and alpha gamma heterodimers are formed first, followed by association with the beta subunit and with each other to form the complete AChR.  相似文献   

16.
Specialized areas within broad, close, cell-substratum contacts seen with reflection interference contrast microscopy in cultures of Xenopus embryonic muscle cells were studied. These areas usually contained a distinct pattern of light and dark spots suggesting that the closeness of apposition between the membrane and the substratum was irregular. They coincided with areas containing acetylcholine receptor clusters identified by fluorescence labeled alpha-bungarotoxin. Freeze-fracture of the cells confirmed these observations. The membrane in these areas was highly convoluted and contained aggregates of large P-face intramembrane particles (probably representing acetylcholine receptors). If cells were fixed and then treated with the sterol- specific antibiotic filipin before fracturing, the pattern of filipin- sterol complex distribution closely followed the pattern of cell- substratum contact. Filipin-sterol complexes were in low density in the regions where the membrane contained clustered intramembrane particles. These membrane regions were away from the substratum (bright white areas in reflection interference contrast; depressions of the P-face in freeze-fracture). Filipin-sterol complexes were also in reduced density where the membrane was very close to the substratum (dark areas in reflection interference contrast; bulges of the P-face in freeze- fracture). These areas were not associated with clustered acetylcholine receptors (aggregated particles). This result suggests that filipin treatment causes little or no artefact in either acetylcholine receptor distribution or membrane topography of fixed cells and that the distribution of filipin-sterol complexes may closely parallel the microheterogeneity of membranes that exist in living cells.  相似文献   

17.
The ability of cultured human arterial smooth muscle cells to regulate low density lipoprotein (LDL) receptor activity was tested. In contrast to human skin fibroblasts incubated with lipoprotein deficient medium under identical conditions, smooth muscle cells showed significantly reduced enhancement of 125I-labeled LDL and 125I-labeled VLDL (very low density lipoprotein) binding. Smooth muscle cells also failed to suppress LDL receptor activity during incubation with either LDL or cholesterol added to the medium, while fibroblasts shoed an active regulatory response. Thus, in comparison with the brisk LDL receptor regulation characteristic of skin fibroblasts, arterial smooth muscle cells have and attenuated capacity to regulate their LDL receptor activity. These results may be relevant to the propensity of these cells to accumulate LDL and cholesterol and form "foam cells" in the arterial wall in vivo, a process associated with atherogenesis.  相似文献   

18.
19.
A key aspect of neuromuscular synapse formation is the clustering of muscle acetylcholine receptors (AChR) at synaptic sites in response to neurally secreted agrin. Agrin-induced AChR clustering in cultured myotubes proceeds via the initial formation of small microclusters, which then aggregate to form AChR clusters. Here we show that the coupling of agrin signaling to AChR clustering is dependent on the coordinated activities of Rac and Rho GTPases. The addition of agrin induces the sequential activation of Rac and Rho in C2 muscle cells. The activation of Rac is rapid and transient and constitutes a prerequisite for the subsequent activation of Rho. This temporal pattern of agrin-induced Rac and Rho activation reflects their respective roles in AChR cluster formation. Whereas agrin-induced activation of Rac is necessary for the initial phase of AChR cluster formation, which involves the aggregation of diffuse AChR into microclusters, Rho activation is crucial for the subsequent condensation of these microclusters into full-size AChR clusters. Co-expression of constitutively active forms of Rac and Rho is sufficient to induce the formation of mature AChR clusters in the absence of agrin. These results establish that Rac and Rho play distinct but complementary roles in the mechanism of agrin-induced AChR clustering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号