首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein phosphatase 1alpha (PP1alpha) regulates phosphorylation of BRCA1, which contains a PP1-binding motif (898)KVTF(901). Mutation of this motif greatly reduces the interaction between BRCA1 and PP1alpha. Here we show that mutation of the PP1-binding motif abolishes the ability of BRCA1 to enhance survival of Brca1-deficient mouse mammary tumor cells after DNA damage. The Rad51 focus formation and comet assays revealed that the DNA repair function of BRCA1 was impaired when the PP1-binding motif was mutated. Analysis of subnuclear localization of GFP-tagged BRCA1 demonstrated that mutation of the PP1-binding motif affected BRCA1 redistribution in response to DNA damage. BRCA1 is required for the formation of Rad51 subnuclear foci after DNA damage. Mutation of the PP1-binding motif in BRCA1 also affected recruitment of Rad51 to sites of DNA damage. Consistent with these findings, knockdown of PP1alpha in BRCA1-proficient cells by small interfering RNA also significantly reduced Rad51 focus formation induced by DNA damage. Further analysis indicated that mutation of the PP1-binding motif compromised BRCA1 activities in homologous recombination. Altogether, our data implicate that interaction with PP1alpha is important for BRCA1 function in DNA repair.  相似文献   

2.
3.
Chk1 phosphorylation by the PI3-like kinases ATR and ATM is critical for its activation and its role in prevention of premature mitotic entry in response to DNA damage or stalled replication. The breast and ovarian tumor suppressor, BRCA1, is among several checkpoint mediators that are required for Chk1 activation by ATM and ATR. Previously we showed that BRCA1 is necessary for Chk1 phosphorylation and activation following ionizing radiation. BRCA1 has been implicated in S-phase checkpoint control yet its mechanism of action is not well characterized. Here we report that BRCA1 is critical for Chk1 phosphorylation in response to inhibition of replication by either cisplatin or hydroxyurea. While Chk1 phosphorylation of S317 is fully dependent on BRCA1, additional proteins may mediate S345 phosphorylation at later time points. In addition, we show that a subset of phosphorylated Chk1 is released from the chromatin in a BRCA1-dependent manner which may lead to the phosphorylation of Chk1 substrate, Cdc25C, on S216 and to S-phase checkpoint activation. Inhibition of Chk1 kinase by UCN-01 or expression of Chk1 phosphorylation mutants in which the serine residues were substituted with alanine residues abrogates BRCA1-dependent cell cycle arrest in response replication inhibition. These data reveal that BRCA1 facilitates Chk1 phosphorylation and its partial chromatin dissociation following replication inhibition that is likely to be required for S-phase checkpoint signaling.  相似文献   

4.
DNA damage during the cell division cycle can activate ATM/ATR and their downstream kinases that are involved in the checkpoint pathway, and cell growth is halted until damage is repaired. As a result of DNA damage induced in mitotic cells by doxorubicin treatment, cells accumulate in a G2-like phase, not in mitosis. Under these conditions, two mitosis-specific kinases, Cdk1 and Plk1, are inhibited by inhibitory phosphorylation and dephosphorylation, respectively. G2-specific phosphorylation of Cdc25 was increased during incubation after mitotic DNA damage. Inhibition of Plk1 through dephosphorylation was dependent on ATM/Chk1 activity. Depleted expression of ATM and Chk1 was achieved using small hairpin RNA (shRNA) plasmid constructs. In this condition, damaged mitotic cells did not accumulated in a G2-like stage, and entered into G1 phase without delay. Protein phosphatase 2A was responsible for dephosphorylation of mitotic Plk1 in response to DNA damage. In knockdown of PP2A catalytic subunits, Plk1 was not dephosphorylated, but rather degraded in response to DNA damage, and cells did not accumulate in G2-like phase. The effect of ATM/Chk1 inhibition was counteracted by overexpression of PP2A, indicated that PP2A may function as a downstream target of ATM/Chk1 at a mitotic DNA damage checkpoint, or may have a dominant effect on ATM/Chk1 function at this checkpoint. Finally, we have shown that negative regulation of Plk1 by dephosphorylation is important to cell accumulation in G2-like phase at the mitotic DNA damage checkpoint, and that this ATM/Chk1/PP2A pathway independent on p53 is a novel mechanism of cellular response to mitotic DNA damage.  相似文献   

5.
During mitosis, the phosphatidylinositol-3 (PI-3) family-related DNA damage checkpoint kinases ATM and ATR were found on the centrosomes of human cells. ATRIP, an interaction partner of ATR, as well as Chk1 and Chk2, the downstream targets of ATR or ATM, were also localized to the centrosomes. Surprisingly, the DNA-PK inhibitor vanillin enhanced the level of ATM on centrosomes. Accordingly, DNA-PKcs, the catalytic subunit of DNA-PK, was also found on the centrosomes. Vanillin altered the phosphorylation of Chk2 in the centrosomes and in whole cell extracts. Nucleoplasmic ATM co-immunoprecipitated with Ku70/86, the DNA binding subunits of DNA-PK, while vanillin diminished this association. Vanillin did not affect microtubule polymerization at the centrosomes but, surprisingly, caused a transient enhancement of alpha-tubulin foci in the nucleus. Interestingly, gamma-tubulin was also present in the nucleus and co-immunoprecipitated with ATR or BRCA1. DNA damage led to a reduction of the mentioned checkpoint proteins on the centrosomes but increased the level of gamma-tubulin at this organelle. Taken together, these results indicate that DNA damage checkpoint proteins may control the formation of gamma-tubulin and/or the kinetics of microtubule formation at the centrosomes, and thereby couple them to the DNA damage response.  相似文献   

6.
ATR (ATM and Rad3-related) initiates a DNA damage signaling pathway in human cells upon DNA damage induced by UV and UV-mimetic agents and in response to inhibition of DNA replication. Genetic data with human cells and in vitro data with Xenopus egg extracts have led to the conclusion that the kinase activity of ATR toward the signal-transducing kinase Chk1 depends on the mediator protein Claspin. Here we have reconstituted a Claspin-mediated checkpoint system with purified human proteins. We find that the ATR-dependent phosphorylation of Chk1, but not p53, is strongly stimulated by Claspin. Similarly, DNA containing bulky base adducts stimulates ATR kinase activity, and Claspin acts synergistically with damaged DNA to increase phosphorylation of Chk1 by ATR. Mutations in putative phosphorylation sites in the Chk1-binding domain of Claspin abolish its ability to mediate ATR phosphorylation of Chk1. We also find that a fragment of Claspin containing the Chk1-binding domain together with a domain conserved in the yeast Mrc1 orthologs of Claspin is sufficient for its mediator activity. This in vitro system recapitulates essential components of the genetically defined ATR-signaling pathway.  相似文献   

7.
hCds1 (Chk2) is an evolutionarily conserved kinase that functions in DNA damage response and cell cycle checkpoint. The Cds1 family of kinases are activated by a family of large phosphatidylinositol 3-kinase-like kinases. In humans, ataxia telangiectasia-mutated (ATM) and ataxia-telangiectasia and Rad3-related kinases activate hCds1 by phosphorylating Thr(68) . hCds1 and Cds1-related kinases contain the FHA (forkhead-associated) domain, which appears to be important for integrating the DNA damage signal. It is not known how ATM phosphorylation activates hCds1 function and whether the phosphorylation is linked to the FHA. Here, we demonstrate that the hCds1-FHA domain is essential for Thr(68) phosphorylation. Thr(68) phosphorylation, in turn, is required for ionizing radiation-induced autophosphorylation of two amino acid residues in hCds1, Thr(383) and Thr(387). These two amino acid residues, located in the activation loop of hCds1, are conserved in hCds1-related kinases and are essential for hCds1 activity. Thus, the hCds1-FHA domain mediates a chain of phosphorylation events on hCds1, which includes phosphorylation by ATM and hCds1 autophosphorylation, in response to DNA damage.  相似文献   

8.
In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NBS1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G(2)/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G(2) checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G(2)/M checkpoint.  相似文献   

9.
BRCA1 is a central component of the DNA damage response mechanism and defects in BRCA1 confer sensitivity to a broad range of DNA damaging agents. BRCA1 is required for homologous recombination and DNA damage-induced S and G(2)/M phase arrest. We show here that BRCA1 is required for ATM- and ATR-dependent phosphorylation of p53, c-Jun, Nbs1 and Chk2 following exposure to ionizing or ultraviolet radiation, respectively, and is also required for ATM phosphorylation of CtIP. In contrast, DNA damage-induced phosphorylation of the histone variant H2AX is independent of BRCA1. We also show that the presence of BRCA1 is dispensable for DNA damage-induced phosphorylation of Rad9, Hus1 and Rad17, and for the relocalization of Rad9 and Hus1. We propose that BRCA1 facilitates the ability of ATM and ATR to phosphorylate downstream substrates that directly influence cell cycle checkpoint arrest and apoptosis, but that BRCA1 is dispensable for the phosphorylation of DNA-associated ATM and ATR substrates.  相似文献   

10.
High expression of Aurora kinase A (Aurora-A) has been found to confer cancer cell radio- and chemoresistance, however, the underlying mechanism is unclear. In this study, by using Aurora-A cDNA/shRNA or the specific inhibitor VX680, we show that Aurora-A upregulates cell proliferation, cell cycle progression, and anchorage-independent growth to enhance cell resistance to cisplatin and X-ray irradiation through dysregulation of DNA damage repair networks. Mechanistic studies showed that Aurora-A promoted the expression of ATM/Chk2, but suppressed the expression of BRCA1/2, ATR/Chk1, p53, pp53 (Ser15), H2AX, γH2AX (Ser319), and RAD51. Aurora-A inhibited the focus formation of γH2AX in response to ionizing irradiation. Treatment of cells overexpressing Aurora-A and ATM/Chk2 with the ATM specific inhibitor KU-55933 increased the cell sensitivity to cisplatin and irradiation through increasing the phosphorylation of p53 at Ser15 and inhibiting the expression of Chk2, γH2AX (Ser319), and RAD51. Further study revealed that BRCA1/2 counteracted the function of Aurora-A to suppress the expression of ATM/Chk2, but to activate the expression of ATR/Chk1, pp53, γH2AX, and RAD51, leading to the enhanced cell sensitivity to irradiation and cisplatin, which was also supported by the results from animal assays. Thus, our data provide strong evidences that Aurora-A and BRCA1/2 inversely control the sensitivity of cancer cells to radio- and chemotherapy through the ATM/Chk2-mediated DNA repair networks, indicating that the DNA repair molecules including ATM/Chk2 may be considered for the targeted therapy against cancers with overexpression of Aurora-A.  相似文献   

11.
Human DNA mismatch repair (MMR) is involved in the removal of DNA base mismatches that arise either during DNA replication or are caused by DNA damage. In this study, we show that the activation of the MMR component hMLH1 in response to doxorubicin (DOX) treatment requires the presence of BRCA1 and that this phenomenon is mediated by an ATM/ATR dependent phosphorylation of the hMLH1 Ser-406 residue. BRCA1 is an oncosuppressor protein with a central role in the DNA damage response and it is a critical component of the ATM/ATR mediated checkpoint signaling. Starting from a previous finding in which we demonstrated that hMLH1 is able to bind to BRCA1, in this study we asked whether BRCA1 might be the bridge for ATM/ATR dependent phosphorylation of the hMLH1 molecular partner. We found that: (i) the negative modulation of BRCA1 expression is able to produce a remarkable reversal of hMLH1 stabilization, (ii) BRCA1 is required for post-translational modification produced by DOX treatment on hMLH1 which is, in turn, attributed to the ATM/ATR activity, (iii) the serine 406 phosphorylatable residue is critical for hMLH1 activation by ATM/ATR via BRCA1. Taken together, our data lend support to the hypothesis suggesting an important role of this oncosuppressor as a scaffold or bridging protein in DNA-damage response signaling via downstream phosphorylation of the ATM/ATR substrate hMLH1.  相似文献   

12.
Inhibition of Chk1 by activated PKB/Akt   总被引:2,自引:0,他引:2  
We have shown recently that DNA damage effector kinase Chk1 is phosphorylated in vitro by protein kinase B/Akt (PKB/Akt) on serine 280. Activation of Chk1 by DNA damage in vivo is suppressed in presence of activated PKB. In this study we show that Chk1 is phosphorylated by PKB in vivo, and that increased phosphorylation by PKB on serine 280 correlates with impairment of Chk1 activation by DNA damage. Our results indicate a likely mechanism for the negative effects that phosphorylation of serine 280 has on activation of Chk1. The Chk1 protein phosphorylated by PKB on serine 280 does not enter into protein complexes after replication arrest. Moreover, Chk1 phosphorylated by PKB fails to undergo activating phosphorylation on serine 345 by ATM/ATR. Phosphorylation by ATM/ATR and association with other checkpoint proteins are essential steps in activation of Chk1. Inhibition of these steps provides a plausible explanation for the observed attenuation of Chk1 activation by activated PKB after DNA damage.  相似文献   

13.
Never-in-mitosis A related protein kinase 1 (Nek1) is involved early in a DNA damage sensing/repair pathway. We have previously shown that cells without functional Nek1 fail to activate the more distal kinases Chk1 and Chk2 and fail to arrest properly at G1/S or M-phase checkpoints in response to DNA damage. As a consequence, foci of damaged DNA in Nek1 null cells persist long after the instigating insult, and Nek1 null cells develop unstable chromosomes at a rate much higher than identically cultured wild type cells. Here we show that Nek1 functions independently of canonical DNA damage responses requiring the PI3 kinase-like proteins ATM and ATR. Chemical inhibitors of ATM/ATR or mutation of the genes that encode them fail to alter the kinase activity of Nek1 or its localization to nuclear foci of DNA damage. Moreover ATM and ATR activities, including the localization of the proteins to DNA damage sites and phosphorylation of early DNA damage response substrates, are intact in Nek1 -/- murine cells and in human cells with Nek1 expression silenced by siRNA. Our results demonstrate that Nek1 is important for proper checkpoint control and characterize for the first time a DNA damage response that does not directly involve one of the known upstream mediator kinases, ATM or ATR.  相似文献   

14.
We have shown recently that DNA damage effector kinase Chk1 is phosphorylated invitro by protein kinase B/Akt (PKB/Akt) on serine 280. Activation of Chk1 by DNAdamage in vivo is suppressed in presence of activated PKB. In this study we show thatChk1 is phosphorylated by PKB in vivo, and that increased phosphorylation by PKB onserine 280 correlates with impairment of Chk1 activation by DNA damage. Our resultsindicate a likely mechanism for the negative effects that phosphorylation of serine 280has on activation of Chk1. The Chk1 protein phosphorylated by PKB on serine 280 doesnot enter into protein complexes after replication arrest. Moreover, Chk1 phosphorylatedby PKB fails to undergo activating phosphorylation on serine 345 by ATM/ATR.Phosphorylation by ATM/ATR and association with other checkpoint proteins areessential steps in activation of Chk1. Inhibition of these steps provides a plausibleexplanation for the observed attenuation of Chk1 activation by activated PKB after DNAdamage.  相似文献   

15.
The ataxia telangiectasia mutated (ATM) and ATR (ATM and Rad3-related) protein kinases exert cell cycle delay, in part, by phosphorylating Checkpoint kinase (Chk) 1, Chk2, and p53. It is well established that ATR is activated following UV light-induced DNA damage such as pyrimidine dimers and the 6-(1,2)-dihydro-2-oxo-4-pyrimidinyl-5-methyl-2,4-(1H,3H)-pyrimidinediones, whereas ATM is activated in response to double strand DNA breaks. Here we clarify the activation of these kinases in cells exposed to IR, UV, and hyperoxia, a condition of chronic oxidative stress resulting in clastogenic DNA damage. Phosphorylation on Chk1(Ser-345), Chk2(Thr-68), and p53(Ser-15) following oxidative damage by IR involved both ATM and ATR. In response to ultraviolet radiation-induced stalled replication forks, phosphorylation on Chk1 and p53 required ATR, whereas Chk2 required ATM. Cells exposed to hyperoxia exhibited growth delay in G1, S, and G2 that was disrupted by wortmannin. Consistent with ATM or ATR activation, hyperoxia induced wortmannin-sensitive phosphorylation of Chk1, Chk2, and p53. By using ATM- and ATR-defective cells, phosphorylation on Chk1, Chk2, and p53 was found to be ATM-dependent, whereas ATR also contributed to Chk1 phosphorylation. These data reveal activated ATM and ATR exhibit selective substrate specificity in response to different genotoxic agents.  相似文献   

16.
Polo-like kinase 1 (Plk1) is an instrumental kinase that modulates many aspects of the cell cycle. Previous investigations have indicated that Plk1 is a target of the DNA damage response, and Plk1 inhibition is dependent on ATM/ATR and Chk1. But the exact mechanism remains elusive. In a proteomic screen to identify Chk1-interacting proteins, we found that myosin phosphatase targeting protein 1 (MYPT1) was present in the immunocomplex. MYPT1 is phosphorylated by CDK1, thus recruiting protein phosphatase 1β (PP1cβ) to dephosphorylate and inactivate Plk1. Here we identified that Chk1 directly interacts with MYPT1 and preferentially phosphorylates MYPT1 at Ser20, which is essential for MYPT1-PP1cβ interaction and subsequent Plk1 dephosphorylation. Phosphorylation of Ser20 is abolished during mitotic damage when Chk1 is inhibited. The degradation of MYPT1 is also regulated by Chk1 phosphorylation. Our results thus unveil the underlying machinery that attenuates Plk1 activity during mitotic damage through Chk1-induced phosphorylation of MYPT1.  相似文献   

17.
ATR and ATM kinases are central to the checkpoint activation in response to DNA damage and replication stress. However, the nature of the signal, which initially activates these kinases in response to UV damage, is unclear. Here, we have shown that DDB2 and XPC, two early UV damage recognition factors, are required for the damage-specific ATR and ATM recruitment and phosphorylation. ATR and ATM physically interacted with XPC and promptly localized to the UV damage sites. ATR and ATM recruitment and their phosphorylation were negatively affected in cells defective in DDB2 or XPC functions. Consequently, the phosphorylation of ATR and ATM substrates, Chk1, Chk2, H2AX, and BRCA1 was significantly reduced or abrogated in mutant cells. Furthermore, UV exposure of cells defective in DDB2 or XPC resulted in a marked decrease in BRCA1 and Rad51 recruitment to the damage site. Conversely, ATR- and ATM-deficiency failed to affect the recruitment of DDB2 and XPC to the damage site, and therefore did not influence the NER efficiency. These findings demonstrate a novel function of DDB2 and XPC in maintaining a vital cross-talk with checkpoint proteins, and thereby coordinating subsequent repair and checkpoint activation.  相似文献   

18.
The ataxia-telangiectasia mutated and RAD3-related (ATR) kinase initiates DNA damage signaling pathways in human cells after DNA damage such as that induced upon exposure to ultraviolet light by phosphorylating many effector proteins including the checkpoint kinase Chk1. The conventional view of ATR activation involves a universal signal consisting of genomic regions of replication protein A-covered single-stranded DNA. However, there are some indications that the ATR-mediated checkpoint can be activated by other mechanisms. Here, using the well defined Escherichia coli lac repressor/operator system, we have found that directly tethering the ATR activator topoisomerase IIβ-binding protein 1 (TopBP1) to DNA is sufficient to induce ATR phosphorylation of Chk1 in an in vitro system as well as in vivo in mammalian cells. In addition, we find synergistic activation of ATR phosphorylation of Chk1 when the mediator protein Claspin is also tethered to the DNA with TopBP1. Together, these findings indicate that crowding of checkpoint mediator proteins on DNA is sufficient to activate the ATR kinase.  相似文献   

19.
Chk1 protein kinase plays a critical role in checkpoints that restrict progression through the cell cycle if DNA replication has not been completed or DNA damage has been sustained. ATR-dependent activation of Chk1 is mediated by Claspin. Phosphorylation of Claspin at two sites (Thr916 and Ser945 in humans) in response to DNA replication arrest or DNA damage recruits Chk1 to Claspin. Chk1 is subsequently phosphorylated by ATR and fully activated to control cell cycle progression. We show that ablation of Chk1 by siRNA in human cells or its genetic deletion in chicken DT40 cells does not prevent phosphorylation of Claspin at Thr916 (Ser911 in chicken). Chk1, however, does play other roles, possibly indirect, in the phosphorylation of Claspin and its induction. These results demonstrate that phosphorylation of Claspin within the Chk1-binding domain is catalysed by an ATR-dependent kinase distinct from Chk1.  相似文献   

20.
Kennedy DR  Beerman TA 《Biochemistry》2006,45(11):3747-3754
Cells lacking the protein kinase ataxia telangiectasia mutated (ATM) have defective responses to DNA double-strand breaks (DSBs), including an inability to activate damage response proteins such as p53. However, we previously showed that cells lacking ATM robustly activate p53 in response to DNA strand breaks induced by the radiomimetic enediyne C-1027. To gain insight into the nature of C-1027-induced ATM-independent damage responses to DNA DSBs, we further examined the molecular mechanisms underlying the cellular response to this unique radiomimetic agent. Like ionizing radiation (IR) and other radiomimetics, breaks induced by C-1027 efficiently activate ATM by phosphorylation at Ser1981, yet unlike other radiomimetics and IR, DNA breaks induced by C-1027 result in normal phosphorylation of p53 and the cell cycle checkpoint kinases (Chk1 and Chk2) in the absence of ATM. In the presence of ATM, but under ATM and Rad3-related kinase (ATR) deficient conditions, C-1027 treatment resulted in a decrease in the level of Chk1 phosphorylation but not in the level of p53 and Chk2 phosphorylation. Only when cells were deficient in both ATM and ATR was there a reduction in the level of phosphorylation of each of these DNA damage response proteins. This reduction was also accompanied by an increased level of cell death in comparison to that of wild-type cells or cells lacking either ATM or ATR. Our findings demonstrate a unique cellular response to C-1027-induced DNA DSBs in that DNA damage response proteins are unaffected by the absence of ATM, as long as ATR is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号