首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    

Aim

Here I review phylogenetic studies concerning the biogeography of the Marquesas Islands, an oceanic hotspot archipelago in the Pacific Ocean formed <5.5 Ma, and compare patterns (particularly pertaining to colonization and diversification) within the archipelago to those reported from the Hawaiian and Society Islands.

Location

Marquesas Islands, French Polynesia (Pacific Ocean).

Methods

I reviewed 37 phylogenetic studies incorporating Marquesas‐endemic taxa. I asked the following questions: (a) where are the sister‐groups of Marquesas lineages distributed? (b) are Marquesas‐endemic “radiations” monophyletic or polyphyletic? (c) what major between‐island phylogeographic barriers are seen in the Marquesas? (d) what evidence exists for diversification within islands? (e) how old is the Marquesas biota compared to the archipelago's age? Finally, these patterns are compared with those seen in the Society Islands and Hawaii.

Results

Most Marquesan lineages have their closest known relatives on other Pacific plate archipelagos (particularly the Society, Hawaiian, and Austral islands). Most Marquesas‐endemic radiations are found to be monophyletic, and among‐island diversification appears to be common. There is limited evidence for within‐island diversification. Some radiations may be consistent with a weak progression rule in which younger lineages are on younger islands. Crown ages of no Marquesas radiations appear to be older than the age of the archipelago (with one exception).

Main conclusions

Diversification of the Marquesas biota resembles that of the Hawaiian Islands more than that of the Society Islands. Many radiations are monophyletic and some appear to diversify in parallel with the formation of the archipelago.
  相似文献   

2.
The islands of French Polynesia cover an area the size of Europe, though total land area is smaller than Rhode Island. Each hot spot archipelago (Societies, Marquesas, Australs) is chronologically arranged. With the advent of molecular techniques, relatively precise estimations of timing and source of colonization have become feasible. We compile data for the region, first examining colonization (some lineages dispersed from the west, others from the east). Within archipelagos, blackflies (Simulium) provide the best example of adaptive radiation in the Societies, though a similar radiation occurs in weevils (Rhyncogonus). Both lineages indicate that Tahiti hosts the highest diversity. The more remote Marquesas show clear examples of adaptive radiation in birds, arthropods and snails. The Austral Islands, though generally depauperate, host astonishing diversity on the single island of Rapa, while lineages on other islands are generally widespread but with large genetic distances between islands. More recent human colonization has changed the face of Polynesian biogeography. Molecular markers highlight the rapidity of Polynesian human (plus commensal) migrations and the importance of admixture from other populations during the period of prehistoric human voyages. However, recent increase in traffic has brought many new, invasive species to the region, with the future of the indigenous biota uncertain.  相似文献   

3.
4.
5.
The little known endemic Henderson Island rail (or Henderson rail) Porzflna atra , inhabits forest on the coastal plain and upraised plateau of Henderson Island. Rails were studied for 15 months from January 1991 to March 1992. The population was estimated at c. 6200 individuals living in pairs or cooperative groups of 3–4 adults on territories averaging about 1 ha. Two or three eggs were laid in covered or open nests near the ground from mid-July to mid-February. Up to five consecutive nesting attempts were made in cases where eggs or young chicks were lost. Adults laid a second clutch when chicks were fully feathered at about one month of age. Both sexes incubated and helped rear the young. Older chicks sometimes helped feed younger siblings. Dispersal of juveniles from the natal territory took place in April. Adult birds underwent a rapid, simultaneous post-nuptial moult of the remiges in February-April; the post-juvenile moult involved body feathers only. Data on morphometries, breeding ecology, courtship behaviour and voice are compared with available information for the spotless crake P. tabuensis , the Henderson rail's closest relative and probable ancestor. These comparisons provide some information on how these two taxa have differentiated since rails arrived on Henderson Island some time in the last 380000 years.  相似文献   

6.
Holland BS  Cowie RH 《Molecular ecology》2007,16(12):2422-2435
We used 276 cytochrome c oxidase subunit I (COI, 645 bp) and a subset of 84 16S large ribosomal subunit (16S, 451 bp) sequences to evaluate geographic patterns of genetic variation in 24 populations of the endemic Hawaiian land snail Succinea caduca spanning its range on six islands. Haplotype networks, gene tree topologies, pairwise molecular divergence and F ST matrices suggest substantial geographic genetic structuring and complex dispersal patterns. Low nucleotide diversity and low pairwise molecular divergence values within populations coupled with higher between population values suggest multiple founder events. High overall haplotype diversity suggests diversification involving rare interpopulation dispersal, fragmentation by historical lava flows and variation in habitat structure. Within-island rather than between-island population comparisons accounted for the majority of molecular variance. Although 98% of 153 COI haplotypes were private by population, a Mantel test showed no evidence for isolation by distance. Mismatch distributions and population partitioning patterns suggest that genetic fragmentation has been driven by punctuated, passive dispersal of groups of closely related haplotypes that subsequently expanded and persisted in isolation for long periods (average > 2 million years ago), and that Pleistocene island connections may have been important in enhancing gene flow. Historical availability of mesic coastal habitat, together with effective dispersal may explain the long-term persistence and unusual multi-island distribution of this species, contrasting with the single-island endemism of much of the Hawaiian biota.  相似文献   

7.
  总被引:1,自引:1,他引:1  
Aim Pacific biogeographical patterns in the widespread plant genus Melicope J.R. Forst. & G. Forst. (Rutaceae) were examined by generating phylogenetic hypotheses based on chloroplast and nuclear ribosomal sequence data. The aims of the study were to identify the number of colonization events of Melicope to the Hawaiian Islands and to reveal the relationship of Hawaiian Melicope to the Hawaiian endemic genus Platydesma H. Mann. The ultimate goal was to determine if the Hawaiian Islands served as a source area for the colonization of Polynesia. Location Nineteen accessions were sampled in this study, namely eight Melicope species from the Hawaiian Islands, four from the Marquesas Islands, one species each from Tahiti, Australia and Lord Howe Island, two Australian outgroups and two species of the Hawaiian endemic genus Platydesma. To place our results in a broader context, 19 sequences obtained from GenBank were included in an additional analysis, including samples from Australia, Papua New Guinea, New Zealand, Southeast Polynesia and Asia. Methods DNA sequences were generated across 19 accessions for one nuclear ribosomal and three chloroplast gene regions. Maximum parsimony analyses were conducted on separate and combined data sets, and a maximum likelihood analysis was conducted on the combined nuclear ribosomal and chloroplast data set. A broader nuclear ribosomal maximum parsimony analysis using sequences obtained from GenBank was also performed. Geographic areas were mapped onto the combined chloroplast and nuclear ribosomal tree, as well as onto the broader tree, using the parsimony criterion to determine the dispersal patterns. Results Phylogenetic analyses revealed that Platydesma is nested within Melicope and is sister to the Hawaiian members of Melicope. The Hawaiian Melicope + Platydesma lineage was a result of a single colonization event, probably from the Austral region. Finally, Marquesan Melicope descended from at least one, and possibly two, colonization events from the Hawaiian Islands. Main conclusions These data demonstrate a shifting paradigm of Pacific oceanic island biogeography, in which the patterns of long‐distance dispersal and colonization in the Pacific are more dynamic than previously thought, and suggest that the Hawaiian Islands may act as a stepping stone for dispersal throughout the Pacific.  相似文献   

8.
    
Although islands as natural laboratories have held the attention of scientists for centuries, they continue to offer new study questions, especially in the context of the current biodiversity crisis. To date, habitat diversity on islands and spatial configuration of archipelagos have received less attention than classical island area and isolation. Moreover, in the field where experiments are impossible, correlative methods have dominated, despite the call for more mechanistic approaches. We developed an agent‐based computer simulation to study the effect of habitat diversity and archipelago configuration on plant species richness and composition in five archipelagos worldwide (Hawaii, Galapagos, Canary Islands, Cape Verde and Azores) and compared simulated diversity patterns to the empirical data. Habitat diversity proved to be an important factor to achieve realistic simulation results in all five archipelagos, whereas spatial structure of archipelagos was important in more elongated archipelagos. In most cases, simulation results correlate stronger with spermatophyte than with pteridophyte data, which we suggest can be attributed to the different dispersal and evolution rates of the two species groups. Correlation strength between simulated and observed diversity also varied among archipelagos, suggesting that geological and biogeographic histories of archipelagos have affected the species richness and composition on the islands. Our study demonstrates that a relatively simple computer simulation involving just a few essential processes can largely emulate patterns of archipelagic species richness and composition and serve as a powerful additional method to complement empirical approaches.  相似文献   

9.
    
All known populations of koa-finches, genus Rhodacanthis , became extinct in the Holocene epoch. Two new species are described here from Quaternary fossil sites in the Hawaiian Islands. One new species, from Kauai and Maui, is roughly the size of the historically known greater koa-finch ( R. palmeri ) but differs in having a more robust skull and in bill morphology. The second new species, from Oahu and Maui, is similar in size to the lesser koa-finch ( R. flaviceps ) but closer to R. palmeri in qualitative osteological traits. The two species of koa-finches known historically from the island of Hawaii are distinct in osteology from the fossil koa-finches on the older Hawaiian islands, indicating that at least two of the four known speciation events in the genus took place within approximately the past 500 kyr. However, the similarity of maxillae from Pleistocene and Holocene sites on Oahu suggests that the Oahu population maintained morphological stasis through the climate changes of the late Quaternary. The evidence that speciation occurred on the youngest island in the archipelago suggests that the process of community assembly on newly emergent Hawaiian landscapes was a stimulus to evolutionary diversification in Rhodacanthis .  © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society , 2005, 144 , 527–541.  相似文献   

10.
The fauna of Bali, situated immediately west of Wallace''s Line, is supposedly of recent Javanese origin and characterized by low levels of endemicity. In flightless Trigonopterus weevils, however, we find 100% endemism for the eight species here reported for Bali. Phylogeographic analyses show extensive in situ differentiation, including a local radiation of five species. A comprehensive molecular phylogeny and ancestral area reconstruction of Indo-Malayan–Melanesian species reveals a complex colonization pattern, where the three Balinese lineages all arrived from the East, i.e. all of them transgressed Wallace''s Line. Although East Java possesses a rich fauna of Trigonopterus, no exchange can be observed with Bali. We assert that the biogeographic picture of Bali has been dominated by the influx of mobile organisms from Java, but different relationships may be discovered when flightless invertebrates are studied. Our results highlight the importance of in-depth analyses of spatial patterns of biodiversity.  相似文献   

11.
Botanists have long considered the origins of the Hawaiian flora in terms of long‐distance dispersal from particular source areas. We extensively reviewed phylogenetic studies of the Hawaiian angiosperm flora to determine the most likely region of origin for each lineage from a defined set of source areas. We also evaluated dispersal modes of each lineage to assess whether certain dispersal modes are associated with a given source area. The largest source category was Widespread (involving related taxa that extend across more than one region), although many of these comprised native non‐endemic species, and accounted for little of the total species diversity (after accounting for in situ speciation). The next largest source regions were Indo‐Malayan and Neotropical. Comparatively few lineages originated from the East Asian region, although these include the single largest lineage. Lineages originating in the Indo‐Malayan region predominantly arrived via Pacific Islands, whereas dispersal from all other regions appears to have been mostly direct. Compared with previous analyses, we found a higher proportion of lineages originating in the Neotropics and temperate North America. Widespread origins were positively associated with dispersal via flotation on water, whereas other origins were associated with dispersal by birds, either through internal transport or external adhesion. We identified thirty‐one potential cases of dispersal out of Hawaii to other islands. Our assessment is complicated by lineages with ancient origins, with further complications likely stemming from hybridization events. Overall, numerous lineages including some distinctive endemic genera have not had sufficient phylogenetic study to determine an origin.  相似文献   

12.
    
With only a single extant representative, endemic to the Tuamotu Archipelago, the Polynesian sandpipers (Aechmorhynchus and Prosobonia) may have had a larger distribution in Eastern Polynesia in the past, with four endemic taxa. Although these aberrant sandpipers' membership to the Scolocapidae has been well supported, finding their closest living taxa has proved difficult and the phylogenetic relationships of these taxa have remained unresolved. We present the first molecular analysis of the Polynesian sandpipers, including sampling of the only known specimen of the extinct Prosobonia leucoptera, collected in 1773. Based on mitochondrial and nuclear gene sequence data, the phylogenetic analyses demonstrate that the Polynesian sandpipers were sister taxa and belonged to the clade that included the other sandpipers (Calidris and allies) and turnstones (Arenaria), although without a close relative among extant genera. Divergence time estimates suggested that the lineage leading to Prosobonia diverged from the other extant sandpipers during the Oligocene and that either the Line Islands or the Tuamotu Archipelago were probably the first archipelagos colonized by the Prosobonia lineage. On the basis of these results, we suggest that Aechmorhynchus parvirostris and Prosobonia leucoptera be regarded as related species within the same genus, and thus that the senior name Prosobonia be used for both taxa.  相似文献   

13.
In the Society archipelago (French Polynesia), Acrocephalus reed warblers are known only from four islands: Tahiti, Mo'orea, Huahine and Raiatea. All populations are now extinct except on Tahiti. Our knowledge of these birds is based on a small number of specimens preserved in museums, collected mostly during the 19th century. We present here a review of the past and present distribution, habitat and threats to the Society Islands reed warblers, including details on the specimens in museum collections. We compare the external morphology of the different populations, and use samples from museum specimens to propose a molecular phylogeny of all taxa based on partial cytochrome b gene sequences. The genetic data do not support the monophyly of the Society Islands reed warblers, which probably derived from three different lineages, found in Tahiti, Mo'orea and in the cluster Raiatea–Huahine. We outline the taxonomic consequences of this phylogeny. Our results support the hypothesis that evolutionary pattern, not distance between islands, shaped the long-distance colonization of oceanic islands by reed warblers.  相似文献   

14.
The Hawaiian Islands form as the Pacific Plate moves over a 'hot spot' in the earth's mantle where magma extrudes through the crust to build huge shield volcanos. The islands subside and erode as the plate carries them to the north-west, eventually to become coral atolls and seamounts. Thus islands are ordered linearly by age, with the oldest islands in the north-west (e.g. Kauai at 5.1 Ma) and the youngest in the south-east (e.g. Hawaii at 0.43 Ma). K–Ar estimates of the date of an island's formation provide a maximum age for the taxa inhabiting the island. These ages can be used to calibrate rates of molecular change under the following assumptions: (i) K–Ar dates are accurate; (ii) tree topologies show that derivation of taxa parallels the timing of island formation; (iii) populations do not colonize long after island emergence; (iv) the coalescent point for sister taxa does not greatly predate the formation of the colonized younger island; (v) saturation effects and (vi) among-lineage rate variation are minimal or correctable; and (vii) unbiased standard errors of distances and regressions can be estimated from multiple pairwise comparisons. We use the approach to obtain overall corrected rate calibrations for: (i) part of the mitochondrial cytochrome b gene in Hawaiian drepanidines (0.016 sequence divergence/Myr); (ii) the Yp1 gene in Hawaiian Drosophila (0.019/Myr Kambysellis et al. 1995 ); and (iii) parts of the mitochondrial 12S and 16S rRNA and tRNAval in Laupala crickets (0.024–0.102/Myr, Shaw 1996 ). We discuss the reliability of the estimates given the assumptions (i–vii) above and contrast the results with previous calibrations of Adh in Hawaiian Drosophila and chloroplast DNA in lobeliods.  相似文献   

15.
    
To infer the evolutionary mechanism of phenotypic variation among isolated island populations, we investigated coat colour and genetic variation in the large Japanese field mouse (Apodemus speciosus) on the Izu Islands (Ohshima, Niijima, Kouzushima, and Miyakejima). Coat colour in the most remote population (Miyakejima) was unique and significantly darker than that in the other populations. Ohshima that is closest to the source population showed variation in coat colour within its population. Phylogeographical analyses using mitochondrial and microsatellite markers suggested that the island populations (except Kouzushima) were founded sequentially from the closest Ohshima to remote Niijima and Miyakejima during or before the penultimate interglacial period. Secondary gene flow from the source population was rare and occurred only for the closest (Ohshima) population. In addition, we found that an amino acid mutation in the Agouti signalling protein gene (Asip) was associated with coat colour variation among the island populations. The mutation was rare in the source population but completely fixed in the Miyakejima population. The phenotypic and genetic variation suggested that severe reduction of genetic variation and changes in allele frequency as a result of sequential colonization (i.e. the founder effect) had significant effects on colour polymorphism. The findings of the present study suggest that the founder effect, in addition to natural selection, facilitated the morphological changes below the species level over a relatively long time scale. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 522–535.  相似文献   

16.
    
Aim  To describe and analyse phylogeographical patterns in the endangered endemic lizard Podarcis lilfordi from across its remaining range and thereby establish baseline information on genetic diversity that will help determine conservation priorities and assist future reintroduction programs.
Location  Balearic Islands, Spain.
Methods  We analysed mitochondrial DNA (2382 bp sequence from eight genes) from 118 individuals and characterized the relationships among haplotypes using parsimony networks, as well as phylogenetic inference. Analyses of historical gene flow and population growth were used to provide further insights into population histories.
Results  Four unconnected parsimony networks were obtained that mirrored the main clades in the phylogenetic tree: (I) all Menorcan populations, (II) Dragonera, Malgrats and Toro islands (Western Mallorca) (III and IV) and the remaining populations from Cabrera and Mallorca. Two major haplotype groups were detected in Menorca (I) and these provided signatures of a demographic expansion and asymmetrical historical gene flow, respectively, concordant with the expected direction of colonization from south to north of the island. Populations from western Mallorca (II) showed evidence of historical allopatric fragmentation events following isolation around the start of the Pleistocene. In networks III and IV, Cabreran populations appear to have become isolated from north and south Mallorca quite recently, with asymmetric gene flow indicating a northwards dispersal direction.
Main conclusions  P. lilfordi is a genetically diverse species that shows substantial mtDNA structuring both between regions and, at a finer scale, between some islet populations within regions. The precarious state of some islet populations shown here to be quite divergent (e.g. Toro island in western Mallorca) means that conservation of this intraspecific biodiversity requires urgent action.  相似文献   

17.
    
The bird faunas of the adjacent Wessel and English Company island chains were sampled at two scales (0.25 ha quadrats and entire islands). Ninety‐six species were recorded from 226 quadrats, with the most frequently recorded species being mistletoebird Dicaeum hirundinaceum, brown honeyeater Lichmera indistincta, silver‐crowned friarbird Philemon argenticeps, bar‐shouldered dove Geopelia humeralis, northern fantail Rhipidura rufiventris and yellow white‐eye Zosterops lutea. At the quadrat scale, vegetation type was a major determinant of the abundance of individual species (and hence species composition), species richness and total bird abundance. Bird species composition and richness at the quadrat scale was also significantly affected by island isolation (particularly the amount of land within 20 km of the island perimeter). Island size had no effect on quadrat‐scale richness or total abundance. However, the abundance of 10 of the 38 most frequently recorded individual species was significantly related to island size, in most cases even when the comparison was restricted to similar habitats. The most striking cases were rufous fantail Rhipidura rufifrons, mangrove golden whistler Pachycephala melanura, brown honeyeater and yellow white‐eye, which were all significantly more abundant on smaller islands. One hundred and seventy‐one species were recorded from the 62 islands sampled. There was a very tight relationship between island size and the number of terrestrial species (73% of deviance explained) and of all species (84% of deviance explained). This relationship was improved (marginally) when isolation was included in the model. Ordination of islands by their terrestrial bird species composition was related to island size and isolation, and suggested an erratic species composition on small islands.  相似文献   

18.
19.
    
When males fight for access to females, such conflict rarely escalates into lethal fight because the risks and costs involved, that is, severe injury or death, are too high. The social spider mite, Stigmaeopsis miscanthi, does exhibit lethal male fights, and this male–male aggressiveness varies among populations. To understand the evolution of lethal fighting, we investigated aggressiveness in 42 populations and phylogenetic relationships in 47 populations along the Japanese archipelago. By analysis of the male weapon morph, a proxy for aggressiveness, we confirmed the existence of a mildly aggressive (ML) form, besides the low aggression (LW) and high aggression (HG) forms reported earlier. To evaluate demographic history of these three forms, we employed the approximate Bayesian computation approach using mtCOI sequences and taking into consideration the postlast glacial expansion history of the host plant, Miscanthus sinensis. As results, hierarchical split models are more likely to explain the observed genetic pattern than admixture models, and the ML form in the subtropical region was considered the ancestral group. The inferred demographic history was consistent with the one reconstructed for the host plant in a previous study. The LW form was split from the ML form during the last glacial period (20,000–40,000 years BP), and subsequently, the HG form was split from the ML form at the end of or after the last glacial period (5,494–10,988 years BP). The results also suggest that the mite invaded Japan more than once, resulting in the present parapatric distribution of LW and HG forms in eastern Japan.  相似文献   

20.
Previous studies have suggested that the presence of sea ice is an important factor in facilitating migration and determining the degree of genetic isolation among contemporary arctic fox populations. Because the extent of sea ice is dependent upon global temperatures, periods of significant cooling would have had a major impact on fox population connectivity and genetic variation. We tested this hypothesis by extracting and sequencing mitochondrial control region sequences from 17 arctic foxes excavated from two late-ninth-century to twelfth-century AD archaeological sites in northeast Iceland, both of which predate the Little Ice Age (approx. sixteenth to nineteenth century). Despite the fact that five haplotypes have been observed in modern Icelandic foxes, a single haplotype was shared among all of the ancient individuals. Results from simulations within an approximate Bayesian computation framework suggest that the rapid increase in Icelandic arctic fox haplotype diversity can only be explained by sea-ice-mediated fox immigration facilitated by the Little Ice Age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号