首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The inflorescences of several members of the Arum lily family warm up during flowering and are able to maintain their temperature at a constant level, relatively independent of the ambient temperature. The heat is generated via a mitochondrial respiratory pathway that is distinct from the cytochrome chain and involves a cyanide-resistant alternative oxidase (AOX). In this paper we have used flux control analysis to investigate the influence of temperature on the rate of respiration through both cytochrome and alternative oxidases in mitochondria isolated from the appendices of intact thermogenic Arum maculatum inflorescences. Results are presented which indicate that at low temperatures, the dehydrogenases are almost in full control of respiration but as the temperature increases flux control shifts to the AOX. On the basis of these results a simple model of thermoregulation is presented that is applicable to all species of thermogenic plants. The model takes into account the temperature characteristics of the separate components of the plant mitochondrial respiratory chain and the control of each process. We propose that 1) in all aroid flowers AOX assumes almost complete control over respiration, 2) the temperature profile of AOX explains the reversed relationship between ambient temperature and respiration in thermoregulating Arum flowers, 3) the thermoregulation process is the same in all species and 4) variations in inflorescence temperatures can easily be explained by variations in AOX protein concentrations.  相似文献   

2.
《BBA》2020,1861(2):148137
Electron transfer from all respiratory chain dehydrogenases of the electron transport chain (ETC) converges at the level of the quinone (Q) pool. The Q redox state is thus a function of electron input (reduction) and output (oxidation) and closely reflects the mitochondrial respiratory state. Disruption of electron flux at the level of the cytochrome bc1 complex (cIII) or cytochrome c oxidase (cIV) shifts the Q redox poise to a more reduced state which is generally sensed as respiratory stress. To cope with respiratory stress, many species, but not insects and vertebrates, express alternative oxidase (AOX) which acts as an electron sink for reduced Q and by-passes cIII and cIV. Here, we used Ciona intestinalis AOX xenotopically expressed in mouse mitochondria to study how respiratory states impact the Q poise and how AOX may be used to restore respiration. Particularly interesting is our finding that electron input through succinate dehydrogenase (cII), but not NADH:ubiquinone oxidoreductase (cI), reduces the Q pool almost entirely (>90%) irrespective of the respiratory state. AOX enhances the forward electron transport (FET) from cII thereby decreasing reverse electron transport (RET) and ROS specifically when non-phosphorylating. AOX is not engaged with cI substrates, however, unless a respiratory inhibitor is added. This sheds new light on Q poise signaling, the biological role of cII which enigmatically is the only ETC complex absent from respiratory supercomplexes but yet participates in the tricarboxylic acid (TCA) cycle. Finally, we delineate potential risks and benefits arising from therapeutic AOX transfer.  相似文献   

3.
Candida parapsilosis mitochondria contain three respiratory chains: the classical respiratory chain (CRC), a secondary parallel chain (PAR) and an “alternative” oxidative pathway (AOX). We report here the existence of similar pathways in C. albicans. To observe the capacity of each pathway to sustain yeast growth, C. albicans cells were cultured in the presence of inhibitors of these pathways. Antimycin A and KCN totally abrogated yeast growth, while rotenone did not prevent proliferation. Furthermore, rotenone promoted only partial respiratory inhibition. Lower concentrations of KCN that promote partial inhibition of respiration did not inhibit yeast growth, while partial inhibition of respiration with antimycin A did. Similarly, AOX inhibitor BHAM decreased O2 consumption slightly but completely stunted cell growth. Reactive oxygen species production and oxidized glutathione levels were enhanced in cells treated with antimycin A or BHAM, but not rotenone or KCN. These findings suggest that oxidative stress prevents C. albicans growth.  相似文献   

4.
Plant mitochondria unlike their animal counterpart have some unique features with highly branched respiratory chain. The present work was undertaken in order to investigate the effect of loss/dysfunction of plant mitochondrial complex I on the relative flux of electrons through alternative oxidase (AOX) and cytochrome oxidase. Loss of a major subunit of mitochondrial complex I in cytoplasmic male sterile II (CMS II) mutant of Nicotiana sylvestris caused respiratory redox perturbations, as evident from the differential CO sensitivity of cytochrome oxidase. The leaf segments of CMS II mutant when exposed to CO under dark aerobic condition were insensitive to the inhibition of cytochrome oxidase, as against the wild type (WT). The differential CO response of WT and CMS II mutants appeared to be due to differences in the redox state of cytochrome a3 (cyt a3), the terminal electron acceptor during in situ respiration. Cyt a3 appeared to be more in its oxidized form in CMS II and hence unable to form cyt a3-CO complex. Pre-treatment of CMS II leaves with 2,4-dinitrophenol, an uncoupler of oxidative phosphorylation increased the CO response. The slight increase in rotenone-insensitive respiration of CMS II could be attributed partly to enhanced flux of electrons through cytochrome pathway to compensate for the loss of phosphorylation site and partly through AOX, which was induced by nitrate.  相似文献   

5.
Laboratory studies indicate that plant respiratory efficiency may decrease in response to low nutrient availability due to increased partitioning of electrons to the energy‐wasteful alternative oxidase (AOX); however, field confirmation of this hypothesis is lacking. We therefore investigated plant respiratory changes associated with succession and retrogression in soils aged from 10 to 120 000 years along the Franz Josef soil chronosequence, New Zealand. Respiration rates and electron partitioning were determined based on oxygen isotopic fractionation. Leaf structural traits, foliar nutrient status, carbohydrates and species composition were measured as explanatory variables. Although soil nutrient levels and species composition varied by site along the chronosequence, foliar respiration across all sites and species corresponded strongly with leaf nitrogen concentration (r2 = 0.8). In contrast, electron partitioning declined with increasing nitrogen/phosphorus (r2 = 0.23) and AOX activity correlated with phosphorus (r2 = 0.64). Independently, total respiration was further associated with foliar Cu, possibly linked to its effect on AOX. Independent control of AOX and cytochrome pathway activities is also discussed. These responses of plant terminal respiratory oxidases – and therefore respiratory carbon efficiency – to multiple nutrient deficiencies demonstrate that modulation of respiratory metabolism may play an important role in plant responses to nutrient gradients.  相似文献   

6.
Human mitochondrial respiration is distinct from that of most plants, microorganisms and even some metazoans in that it reduces molecular oxygen only through the highly cyanide-sensitive enzyme cytochrome c oxidase. Here we show that expression of the cyanide-insensitive alternative oxidase (AOX), recently identified in the ascidian Ciona intestinalis, is well tolerated by cultured human cells and confers spectacular cyanide resistance to mitochondrial substrate oxidation. The expressed AOX seems to be confined to mitochondria. AOX involvement in electron flow is triggered by a highly reduced redox status of the respiratory chain (RC) and enhanced by pyruvate; otherwise, the enzyme remains essentially inactive. AOX expression promises to be a valuable tool to limit the deleterious consequences of RC deficiency in human cells and whole animals.  相似文献   

7.
Bioenergetics of tomato (Lycopersicon esculentum) development on the plant was followed from the early growing stage to senescence in wild type (climacteric) and nonripening mutant (nor, nonclimacteric) fruits. Fruit development was expressed in terms of evolution of chlorophyll a content allowing the assessment of a continuous time-course in both cultivars. Measured parameters: the cytochrome pathway-dependent respiration, i.e., the ATP synthesis-sustained respiration (energy-conserving), the uncoupling protein (UCP) activity-sustained respiration (energy-dissipating), the alternative oxidase(AOX)-mediated respiration (energy-dissipating), as well as the protein expression of UCP and AOX, and free fatty acid content exhibited different evolution patterns in the wild type and nor mutant that can be attributed to their climacteric/nonclimacteric properties, respectively. In the wild type, the climacteric respiratory burst observed in vitro depended totally on an increse in the cytochrome pathway activity sustained by ATP synthesis, while the second respiratory rise during the ripening stage was linked to a strong increase in AOX activity accompanied by an overexpression of AOX protein. In wild type mitochondria, the 10-M linoleic acid-stimulated UCP-activity-dependent respiration remained constant during the whole fruit development except in senescence where general respiratory decay was observed.  相似文献   

8.
《BBA》2023,1864(2):148947
The mitochondrial respiratory chain or electron transport chain (ETC) facilitates redox reactions which ultimately lead to the reduction of oxygen to water (respiration). Energy released by this process is used to establish a proton electrochemical gradient which drives ATP formation (oxidative phosphorylation, OXPHOS). It also plays an important role in vital processes beyond ATP formation and cellular metabolism, such as heat production, redox and ion homeostasis. Dysfunction of the ETC can thus impair cellular and organismal viability and is thought to be the underlying cause of a heterogeneous group of so-called mitochondrial diseases. Plants, yeasts, and many lower organisms, but not insects and vertebrates, possess an enzymatic mechanism that confers resistance to respiratory stress conditions, i.e., the alternative oxidase (AOX). Even in cells that naturally lack AOX, it is autonomously imported into the mitochondrial compartment upon xenotopic expression, where it refolds and becomes catalytically engaged when the cytochrome segment of the ETC is blocked. AOX was therefore proposed as a tool to study disease etiologies. To this end, AOX has been xenotopically expressed in mammalian cells and disease models of the fruit fly and mouse. Surprisingly, AOX showed remarkable rescue effects in some cases, whilst in others it had no effect or even exacerbated a condition. Here we summarize what has been learnt from the use of AOX in various disease models and discuss issues which still need to be addressed in order to understand the role of the ETC in health and disease.  相似文献   

9.
The rate of oxygen consumption and the participation of the mitochondrial oxidases cytochrome oxidase (COX) and the alternative KCN-resistant mitochondrial oxidase (AOX) were determined in nondifferentiated stolons and small newly developed tubers. High rates of about 300 l O2/(g fr wt h) and low sensitivity to cyanide were characteristic of stolon respiration. The AOX activity comprised the major part of the latter (60%). As tubers developed, their respiration rate declined and the proportion of mitochondrial oxidases changed: COX became the major terminal oxidase, while the AOX input dropped to 15% of the total oxygen consumption. The AOX input correlated with the total monosaccharide content in stolons and tubers. These data are in line with the concept that the alternative pathway of mitochondrial oxidation serves as a mechanism of energy overflow by which to utilize excess carbohydrates that the cell can neither store nor utilize.  相似文献   

10.
The temperature response of plant respiration varies between species and can acclimate to changing temperatures. Mitochondrial respiration in plants has two terminal oxidases: the cytochrome c oxidase (COX) and the cyanide-resistant alternative oxidase (AOX). In Populus × canadensis var. italica, a deciduous tree species, we investigated the temperature response of leaf respiration via the alternative and cytochrome pathways, as well as seasonal changes in these pathways, using the oxygen isotope fractionation technique. The electron partitioning through the alternative pathway (τ(a) ) increased from 0 to 30-40% with measurement temperatures from 6 to 30°C at all times measured throughout the growing season. τ(a) at the growth temperature (the average temperature during 3 days prior to sampling) increased from 12 to 29% from spring until late summer and decreased thereafter. Total respiration declined throughout the growing season by 50%, concomitantly with decreases in both AOX (64%) and COX (32%) protein abundances. Our results provide new insight into the natural variability of AOX protein abundances and alternative respiration electron partitioning over immediate and seasonal timescales.  相似文献   

11.
? We report the first investigation of changes in electron partitioning via the alternative respiratory pathway (AP) and alternative oxidase (AOX) protein abundance in field-grown plants and their role in seasonal acclimation of respiration. ? We sampled two alpine grasses native to New Zealand, Chionochloa rubra and Chionochloa pallens, from field sites of different altitudes, over 1 yr and also intensively over a 2-wk period. ? In both species, respiration acclimated to seasonal changes in temperature through changes in basal capacity (R??) but not temperature sensitivity (E?). In C. pallens, acclimation of respiration may be associated with a higher AOX : cytochrome c oxidase (COX) protein abundance ratio. Oxygen isotope discrimination (D), which reflects relative changes in AP electron partitioning, correlated positively with daily integrated photosynthetically active radiation (PAR) in both species over seasonal timescales. Respiratory parameters, the AOX : COX protein ratio and D were stable over a 2-wk period, during which significant temperature changes were experienced in the field. ? We conclude that respiration in Chionochloa spp. acclimates strongly to seasonal, but not to short-term, temperature variation. Alternative oxidase appears to be involved in the plant response to both seasonal changes in temperature and daily changes in light, highlighting the complexity of the function of AOX in the field.  相似文献   

12.
13.
Some plants have the ability to maintain similar respiratory rates (measured at the growth temperature) when grown at different temperatures. This phenomenon is referred to as respiratory homeostasis. Using wheat and rice cultivars with different degrees of respiratory homeostasis (H), we previously demonstrated that high-H cultivars maintained shoot and root growth at low temperature [Kurimoto et al. (2004) Plant Cell Environ., 27: 853]. Here, we assess the relationship between respiratory homeostasis and the efficiency of respiratory ATP production, by measuring the levels of alternative oxidase (AOX) and uncoupling protein (UCP), which have the potential to decrease respiratory ATP production per unit of oxygen consumed. We also measured SHAM- and CN-resistant respiration of intact roots, and the capacity of the cytochrome pathway (CP) and AOX in isolated mitochondria. Irrespective of H, SHAM-resistant respiration of intact roots and CP capacity of isolated root mitochondria were larger when plants were grown at low temperature, and the maximal activity and relative amounts of cytochrome c oxidase showed a similar trend. In contrast, CN-resistant respiration of intact roots and relative amounts of AOX protein in mitochondria isolated from those roots, were lower in high-H plants grown at low temperature. In the roots of low-H cultivars, relative amounts of AOX protein were higher at low growth temperature. Relative amounts of UCP protein showed similar trends to AOX. We conclude that maintenance of growth rate in high-H plants grown at low temperature is associated with both respiratory homeostasis and a high efficiency of respiratory ATP production.  相似文献   

14.
Alternative oxidase (AOX) is a ubiquitous respiratory enzyme found in plants, fungi, protists and some bacterial species. One of the major questions about this enzyme is related to its metabolic role(s) in cellular physiology, due to its capacity to bypass the proton-pumping cytochrome pathway, and as a consequence it has great energy-wasting potential. In this study, the physiological role and regulatory mechanisms of AOX in the fungal phytopathogen Ustilago maydis were studied. We found evidence for at least two metabolic functions for AOX in this organism, as a major part of the oxidative stress-handling machinery, a well-described issue, and as part of the mechanisms that increase the metabolic plasticity of the cell, a role that might be valuable for organisms exposed to variations in temperature, nutrient source and availability, and biotic or abiotic factors that limit the activity of the cytochrome pathway. Experiments under different culture conditions of ecological significance for this organism revealed that AOX activity is modified by the growth stage of the culture, amino acid availability and growth temperature. In addition, nucleotide content, stimulation of AOX by AMP and respiratory rates obtained after inhibition of the cytochrome pathway showed that fungal/protist AOX is activated under low-energy conditions, in contrast to plant AOX, which is activated under high-energy conditions. An estimation of the contribution of AOX to cell respiration was performed by comparing the steady-state concentration of adenine nucleotides, the mitochondrial membrane potential, and the respiratory rate.  相似文献   

15.
16.
17.
Strain inl-89601 of Neurospora crassa respires exclusively by means of the mitochondrial cytochrome chain. The respiration of this strain is entirely inhibited by cyanide or antimycin A, the classical inhibitors of cytochrome chain respiration. When this strain was grown in the presence of chloramphenicol, however, two additional terminal oxidases were detected. One of these oxidases is inhibited by substituted hydroxamic acids and has been described previously. The second oxidase was not inhibited by cyanide or hydroxamic acid but was inhibited by azide in the presence of both cyanide and hydroxamic acid. This azide-sensitive respiration was due to a single respiratory pathway with a Ki for azide of 200 micrometer. A small amount of azide-sensitive respiration was detected in mitochondrial fractions obtained from chloramphenicol-treated cells, and it is likely that the azide-sensitive oxidase is localized in the mitochondrion. The determinants for the azide-sensitive and hydroxamate-sensitive oxidases segregate in a Mendelian manner in crosses and are either unlinked or not closely linked to each other.  相似文献   

18.
We investigated the expressions of genes for alternative oxidase (AOX1a, AOX1b, AOX1c and AOX2) and genes for cytochrome c oxidase (COX5b and COX6b) during germination of Arabidopsis thaliana, and examined oxygen uptakes of the alternative respiration and the cytochrome respiration in imbibed Arabidopsis seeds. A Northern blot analysis showed that AOX2 mRNA has already accumulated in dry seeds and subsequently decreased, whereas accumulation ofAOX1a mRNA was less abundant from 0 hours to 48 hours after imbibition and then increased. The increase of the capacity of the alternative pathway appeared to be dependent on the expressions of both AOX2 and AOX1a. On the other hand, steady-state mRNA levels of COX5b and COX6b were gradually increased during germination, and the capacity of the cytochrome pathway was correlated with the increase of expressions of the COX genes. Antimycin A, the respiratory inhibitor, strongly increased the expression of AOX1a but had no effect on the expression of AOX2. A 5'RACE analysis showed that AOX2 consists of five exons, which is different from the case of most AOX genes identified so far. Analysis of subcellular localization of AOX2 using green fluorescent protein indicated that the AOX2 protein is imported into the mitochondria.  相似文献   

19.
Mitochondria, isolated from heterotrophic Euglena gracilis , have cyanide-resistant alternative oxidase (AOX) in their respiratory chain. Cells cultured under a variety of oxidative stress conditions (exposure to cyanide, cold, or H2O2) increased the AOX capacity in mitochondria and cells, although it was significant only under cold stress; AOX sensitivity to inhibitors was also increased by cold and cyanide stress. The value of AOX maximal activity reached 50% of total respiration below 20 degrees C, whereas AOX full activity was only 10-30% of total respiration above 20 degrees C. The optimum pH for AOX activity was 6.5 and for the cytochrome pathway was 7.3. GMP, AMP, pyruvate, or DTT did not alter AOX activity. The reduction level of the quinone pool was higher in mitochondria from cold-stressed than from control cells; furthermore, the content of reduced glutathione was lower in cold-stressed cells. Growth in the presence of an AOX inhibitor was not affected in control cells, whereas in cold-stressed cells, growth was diminished by 50%. Cyanide diminished growth in control cells by 50%, but in cold-stressed cells this inhibitor was ineffective. The data suggest that AOX activity is part of the cellular response to oxidative stress in Euglena .  相似文献   

20.
Cyanide-resistant non-phosphorylating respiration is known in mitochondria from plants, fungi, and microorganisms but is absent in mammals. It results from the activity of an alternative oxidase (AOX) that conveys electrons directly from the respiratory chain (RC) ubiquinol pool to oxygen. AOX thus provides a bypath that releases constraints on the cytochrome pathway and prevents the over-reduction of the ubiquinone pool, a major source of superoxide. RC dysfunctions and deleterious superoxide overproduction are recurrent themes in human pathologies, ranging from neurodegenerative diseases to cancer, and may be instrumental in ageing. Thus, preventing RC blockade and excess superoxide production by means of AOX should be of considerable interest. However, because of its energy-dissipating properties, AOX might produce deleterious effects of its own in mammals. Here we show that AOX can be safely expressed in the mouse (MitAOX), with major physiological parameters being unaffected. It neither disrupted the activity of other RC components nor decreased oxidative phosphorylation in isolated mitochondria. It conferred cyanide-resistance to mitochondrial substrate oxidation and decreased reactive oxygen species (ROS) production upon RC blockade. Accordingly, AOX expression was able to support cyanide-resistant respiration by intact organs and to afford prolonged protection against a lethal concentration of gaseous cyanide in whole animals. Taken together, these results indicate that AOX expression in the mouse is innocuous and permits to overcome a RC blockade, while reducing associated oxidative insult. Therefore, the MitAOX mice represent a valuable tool in order to investigate the ability of AOX to counteract the panoply of mitochondrial-inherited diseases originating from oxidative phosphorylation defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号