首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meiofauna play an essential role in the diet of small and juvenile fish. However, it is less well documented which meiofaunal prey groups in the sediment are eaten by fish. Trophic relationships between five demersal fish species (solenette, goby, scaldfish, dab <20 cm and plaice <20 cm) and meiofaunal prey were investigated by means of comparing sediment samples and fish stomach contents collected seasonally between January 2009 and January 2010 in the German Bight. In all seasons, meiofauna in the sediment was numerically dominated by nematodes, whereas harpacticoids dominated in terms of occurrence and biomass. Between autumn and spring, the harpacticoid community was characterized by Pseudobradya minor and Halectinosoma canaliculatum, and in summer by Longipedia coronata. Meiofaunal prey dominated the diets of solenette and gobies in all seasons, occurred only seasonally in the diet of scaldfish and dab, and was completely absent in the diet of plaice. For all fish species (excluding plaice) and in each season, harpacticoids were the most important meiofauna prey group in terms of occurrence, abundance and biomass. High values of Ivlev’s index of selectivity for Pseudobradya spp. in winter and Longipedia spp. in summer provided evidence that predation on harpacticoids was species-selective, even though both harpacticoids co-occurred in high densities in the sediments. Most surficial feeding strategies of the studied fish species and emergent behaviours of Pseudobradya spp. and Longipedia spp. might have caused this prey selection. With increasing fish sizes, harpacticoid prey densities decreased in the fish stomachs, indicating a diet change towards larger benthic prey during the ontogeny of all fish species investigated.  相似文献   

2.
On coral reefs, the epilithic algal matrix (EAM) is widely recognised as an important resource for herbivorous and detritivorous fishes. In comparison, little is known of the interaction between benthic carnivores and the EAM, despite the abundance of Crustacea within the EAM. The trophic importance of the EAM to fishes was investigated in Pioneer Bay, Orpheus Island, Great Barrier Reef. Fish densities were quantified using visual and clove oil censuses, and gut content analyses conducted on abundant fish species. Crustaceans were found to be an important dietary category, contributing between 49.5 and 100 % of the gut contents, with harpacticoid copepods being the dominant component. Of the benthic carnivores, the goby Eviota zebrina was found to consume the most harpacticoids with a mean of 249 copepods m?2 day?1. This represents approximately 0.1 % of the available harpacticoid population in the EAM. In a striking comparison, herbivorous parrotfishes were estimated to consume over 12,000 harpacticoids m?2 day?1, over 27 times more than all benthic carnivores surveyed, representing approximately 5.3 % of the available harpacticoid copepod population each day. The high consumption of harpacticoid copepods by benthic carnivores and parrotfishes indicates that harpacticoids form an important trophic link between the EAM and higher trophic levels on coral reefs.  相似文献   

3.
Copepods are known as important consumers of primary production and are eaten by larger animals. They therefore form a main link to higher trophic levels. While feeding pathways and specificity of planktonic copepods have been well studied, the selectivity of the benthic harpacticoid copepods is far less documented. A better knowledge of the functional ecology of harpacticoids as important grazers on primary producers may have consequences for the re-evaluation of basic energy flow in benthic ecosystems.We tested whether size selectivity for diatoms exists in harpacticoid copepods. We hypothesized that size selectivity of harpacticoid copepod species is strongly related to body size. Because of morphological constraints, we expected smaller copepods to prefer smaller diatoms while larger copepods should be able to consume both small and large diatoms. We tested this hypothesis in four harpacticoid copepod species of varied body size: Tigriopus brevicornis, Harpacticus obscurus, Amphiascus minutus and Paramphiascella fulvofasciata. As food source we used two 13C labelled strains of the benthic diatom Seminavis robusta with a four-fold difference in cell biovolume.Three out of four harpacticoid species showed size selectivity: H. obscurus and A. minutus preferred the larger Seminavis cells, while P. fulvofasciata selected the smaller Seminavis cells. Based on monoclonal treatments, there was no clear preference found for T. brevicornis although there was a small preference for large cells in the mixed treatments. Except for P. fulvofasciata, all species showed a lower uptake when offered the mixed diet (both small and large cells). Although most species showed a size selectivity, our results suggest that this selectivity was not related to their body size. However, the only species that ate significantly more of small diatoms was characterised by comparatively small mouthparts in relation to its body size.  相似文献   

4.
The diversity of species assemblages which occupy a basal position in the trophic pyramid (typically unicellular algae in aquatic environments) is known to influence the interaction with organisms of higher trophic levels. A laboratory feeding experiment was conducted with cultures of three benthic diatom species (Navicula phyllepta, Grammatophora marina and Cylindrotheca closterium) as primary producers and three harpacticoid copepod species (Harpacticus obscurus, Paramphiascella fulvofasciata and Tigriopus brevicornis) as grazers to evaluate the effects of food diversity (and concomitant food availability) on grazing selectivity. This kind of selectivity experiments is singular for benthic harpacticoid copepods as so far, information on food selection of harpacticoids is scarce.Uptake of a unispecific food source by a single copepod species decreased as food diversity (and concomitant overall food concentration) increased. All three consumers reacted similarly to changing food diversity, but exhibited strong species-specific responses to food identity i.e. which diatom was added was crucial. Irrespective of level of food diversity, H. obscurus took up high amounts of G. marina, whereas both P. fulvofasciata and T. brevicornis preferred C. closterium when given the choice between different diatoms. As for zooplanktonic taxa, this experiment showed that in lower benthic marine food webs both prey organisms (primary producers) and grazers play a very specific role. Diversity of food and its identity are of critical importance at the base of the trophic pyramid, influencing trophic transfer from primary producers over grazers to higher trophic levels.  相似文献   

5.
Spatial synchrony can increase extinction risk and undermines metapopulation persistence. Both dispersal and biotic interactions can strongly affect spatial synchrony. Here, we explore the spatial synchrony of a tri-trophic food chain in two patches connected by density-dependent dispersal, namely the strategies of prey evasion (PE) and predator pursuit (PP). The dynamics of the food chain are depicted by both the Hastings–Powell model and the chemostat model, with synchrony measured by the Pearson correlation coefficient. We use the density-independent dispersal in the system as a baseline for comparison. Results show that the density-independent dispersal of a species in the system can promote its dynamic synchrony. Dispersal of intermediate species in the tri-trophic food chain is the strongest synchronizer. In contrast, the density-dependent PP and PE of intermediate species can desynchronize the system. Highly synchronized dynamics emerged when the basal species has a strong PE strategy or when the top species has a moderate PP strategy. Our results reveal the complex relationship between density-dependent dispersal and spatial synchrony in tri-trophic systems.  相似文献   

6.
Global and regional patterns in lotic meiofauna   总被引:4,自引:0,他引:4  
  • 1 Parsimony analysis of endemicity (PAE) was used to assess patterns in the distribution of harpacticoid copepods (all freshwater species and stream species only) at global and regional scales. These analyses provided a focus for reviewing large scale patterns and processes in freshwater meiofauna.
  • 2 On a global scale, PAE suggested that large‐scale biogeographical events have been most important in shaping present‐day distributions in the Canthocamptidae. A small proportion (4%) of canthocamptid species were widespread (i.e. occurred in more than one biogegraphical region), suggesting that dispersal may also play a role in determining distribution at the species level. Global distribution patterns for other meiofauna suggest varying roles for dispersal and vicariant events. No consistent latitudinal trends in species diversity were evident, although a lack of distributional data for many regions, and uncertainty over the status of many cosmopolitan species, precludes more robust analyses. Molecular techniques should prove useful in identifying truly cosmopolitan taxa.
  • 3 On a regional scale, a PAE within Western Europe demonstrated a clear link between the distribution of canthocamptid species and the extent of the Last (Wiechselian) glaciation. Northern and southern areas of Europe contain distinctive harpacticoid faunas and the recolonisation of northern Europe appears to have been from the Balkans rather than other Mediterranean peninsulae. The high harpacticoid diversity in southern Europe, may reflect a lack of glacial disruption of groundwater habitats.
  • 4 A PAE of lotic data for harpacticoid copepods within the Holarctic reflected the global PAE for freshwater harpacticoids as a whole, but not the regional PAE. A high proportion of stream‐dwelling harpacticoids are widespread species, but only one (Bryocamptus zschokkei) was found in streams across the Holarctic. Other cosmopolites were restricted to streams in Europe or North America, suggesting that species‘ niche requirements might differ among regions. There appeared to be some convergence in the composition of lotic copepod communities in terms of the number of species within genera.
  • 5 We conclude that large‐scale processes inevitably have a major influence on the local composition of lotic meiofaunal communities, but that the relative importance of small scale vs. large scale processes is unclear at present, largely due to a paucity of suitable data.
  相似文献   

7.
Bowler DE  Benton TG 《Oecologia》2011,166(1):111-119
Dispersal can play an important role in both the local and regional dynamics of populations. Empirical studies have shown that the proportion of individuals dispersing is often density dependent, which may have implications for the effect of dispersal on populations. In this study, we manipulate the dispersal strategy of adults within two-patch laboratory populations of soil mites and compare the consequences of fixed (density-independent) and density-dependent dispersal in environments of constant and temporally varying resource availability. Effects of dispersal on population dynamics were dependent on the presence of environmental variation. Both dispersal strategies tended to spatially homogenize the population abundance of adults in a variable environment. However, the effect of environmental variation on mean adult abundance was greater with density-dependent dispersal than with fixed dispersal. Adult dispersal did not affect juvenile or egg abundance. This study demonstrates the potential significance of density-dependent dispersal for population dynamics, but emphasizes the role of the environmental context.  相似文献   

8.
Despite a large body of empirical evidence suggesting that the dispersal rates of many species depend on population density, most metapopulation models assume a density-independent rate of dispersal. Similarly, studies investigating the evolution of dispersal have concentrated almost exclusively on density-independent rates of dispersal. We develop a model that allows density-dependent dispersal strategies to evolve. Our results demonstrate that a density-dependent dispersal strategy almost always evolves and that the form of the relationship depends on reproductive rate, type of competition, size of subpopulation equilibrium densities and cost of dispersal. We suggest that future metapopulation models should account for density-dependent dispersal  相似文献   

9.
Studies on cannibalism in harpacticoid copepods are restricted to predation on naupliar larvae in rock-pool harpacticoids of the genus Tigriopus. An earlier experimental study on the Mediterranean copepod Tigriopus fulvus indicated that females recognized their own larvae and preferentially preyed on nauplii other than their own. In a series of laboratory experiments, we tested if there were differences in naupliar predation as a function of crowding, food level and sex in Tigriopus brevicornis and T. fulvus. Results show that cannibalism was restricted to the first larval stages (N1 and N2). Both food availability and adult density significantly affected the predation rate. Contrary to earlier suggestions, adult males also preyed on the nauplii. We found no evidence that adults spare their own offspring, for neither T. fulvus nor T. brevicornis.This is in accordance with what one would expect for species having the life history characteristics of Tigriopus, i.e.: multiple broods and large number of offspring. Earlier results indicating parental care in Tigriopus must be taken with caution.  相似文献   

10.
We conducted a microcosm experiment to evaluate the capability of fauna inhabiting or being transported by drifting filamentous algae to colonize defaunated sediment. We expected meiofauna would perform a quicker and more effective re-colonization of disturbed areas by means of the algal mats than their macrofaunal counterparts. Similarly, within meiofauna, we expected more mobile taxa such as ostracods and harpacticoids to colonize the sediment more readily than other more sedentary ones such as nematodes. Naturally drifting algae were collected from the field and placed in 1 l aquaria on top of 5 cm of defaunated sediment. After 3 and 6 days, one core sample (5 cm deep) was taken from each aquarium; the first 2 cm were sliced into 2 mm layers, and the remaining fraction into 1 cm layers. The sediment remaining in the aquaria was sieved through a 0.5 mm sieve to collect the re-colonizing macrofauna. The dominant macrofaunal taxa inhabiting the algae were juvenile bivalves and gastropods, with Cerastoderma glaucum accounting for the majority of the bivalves and Hydrobia sp. for most of the gastropods. After 3 and 6 days, the most abundant macrofaunal taxa colonizing the sediment were Cerastoderma glaucum, Hydrobia sp. and gammarid amphipods. Higher abundances were found after 6 days than after 3, though differences were not significant for any of the major taxa. Meiofauna inhabiting the algae were dominated by rotifers, nematodes, ostracods, chironomid larvae and harpacticoid copepods. Contrary to our predictions, nematode and harpacticoid species inhabiting the drifting algae were not driven to sediment re-colonization but remained in the algae. Our results indicate that some benthic animals may indeed benefit from drifting algal mats as a means of dispersal and re-colonization of previously defaunated sediments in relatively short periods of time. Also, they may contribute to explain some of the trends found in other studies, regarding species increase under drifting algae and the recovery patterns found in areas often exposed to algal conglomerates.  相似文献   

11.
Natal dispersal enables population connectivity, gene flow and metapopulation dynamics. In polygynous mammals, dispersal is typically male-biased. Classically, the ‘mate competition’, ‘resource competition’ and ‘resident fitness’ hypotheses predict density-dependent dispersal patterns, while the ‘inbreeding avoidance’ hypothesis posits density-independent dispersal. In a leopard (Panthera pardus) population recovering from over-harvest, we investigated the effect of sex, population density and prey biomass, on age of natal dispersal, distance dispersed, probability of emigration and dispersal success. Over an 11-year period, we tracked 35 subadult leopards using VHF and GPS telemetry. Subadult leopards initiated dispersal at 13.6 ± 0.4 months. Age at commencement of dispersal was positively density-dependent. Although males (11.0 ± 2.5 km) generally dispersed further than females (2.7 ± 0.4 km), some males exhibited opportunistic philopatry when the population was below capacity. All 13 females were philopatric, while 12 of 22 males emigrated. Male dispersal distance and emigration probability followed a quadratic relationship with population density, whereas female dispersal distance was inversely density-dependent. Eight of 12 known-fate females and 5 of 12 known-fate male leopards were successful in settling. Dispersal success did not vary with population density, prey biomass, and for males, neither between dispersal strategies (philopatry vs. emigration). Females formed matrilineal kin clusters, supporting the resident fitness hypothesis. Conversely, mate competition appeared the main driver for male leopard dispersal. We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased. We conclude that conservation interventions that facilitated local demographic recovery in the study area also restored dispersal patterns disrupted by unsustainable harvesting, and that this indirectly improved connectivity among leopard populations over a larger landscape.  相似文献   

12.
1. Dispersal intensity is a key process for the persistence of prey-predator metacommunities. Consequently, knowledge of the ecological mechanisms of dispersal is fundamental to understanding the dynamics of these communities. Dispersal is often considered to occur at a constant per capita rate; however, some experiments demonstrated that dispersal may be a function of local species density. 2. Here we use aquatic experimental microcosms under controlled conditions to explore intra- and interspecific density-dependent dispersal in two protists, a prey Tetrahymena pyriformis and its predator Dileptus sp. 3. We observed intraspecific density-dependent dispersal for the prey and interspecific density-dependent dispersal for both the prey and the predator. Decreased prey density lead to an increase in predator dispersal, while prey dispersal increased with predator density. 4. Additional experiments suggest that the prey is able to detect its predator through chemical cues and to modify its dispersal behaviour accordingly. 5. Density-dependent dispersal suggests that regional processes depend on local community dynamics. We discuss the potential consequences of density-dependent dispersal on metacommunity dynamics and stability.  相似文献   

13.
Population dynamics are typically affected by a combination of density-independent and density-dependent factors, the latter of which have been conceptually and theoretically linked with how variable population sizes are over time—which in turn has been tied to how prone populations are to extinction. To address evidence for the occurrence of density dependence and its relationship with population size variability (pv), we quantified each of these for 126 populations of 8 species of Salmoniformes. Using random-effects models, we partitioned variation in the strength of density dependence and the magnitude of pv between and within species and estimated the correlation of density dependence and population size variability at both the between- and within-species levels. We found that variation in the strength of density dependence was predominately within species (I 2 = 0.47). In contrast, variation in population size variability was distributed both between and within species (I 2 = 0.40). Contrary to theoretical and conceptual expectations, the strength of density dependence and the magnitude of population size variability were positively correlated at the between species level (r = 0.90), although this estimate had 95 % credibility intervals (Bayesian analogues to confidence intervals) that overlapped zero. The within-species correlation between density dependence and population size variability was not distinguishable from zero. Given that density dependence for Salmoniformes was highly variable within species, we next determined the joint effects of intrinsic (density-dependent) and extrinsic (density-independent) factors on the population dynamics of a threatened salmonid, the Lahontan cutthroat trout (Oncorhynchus clarkii henshawi). We found that density-dependent and -independent factors additively contributed to population dynamics. This finding suggests that the observed within-species variability in density dependence might be attributable to local differences in the strength of density-independent factors.  相似文献   

14.
Habitat modifying organisms can alter the distribution of associated species. We surveyed soft-sediment patches in Bodega Harbor, California and found that patches with high densities of the phoronid Phoronopsis harmeri (Pixell, 1912), a chemically-defended tube-building lophophorate, have higher infaunal abundance and richness than similar patches with low densities of P. harmeri. To determine whether this difference was driven by P. harmeri and whether this difference is attributable to the activities of the organism, or simply its physical structure, we conducted a field experiment with four treatments: live phoronids, mimics of phoronid structure, phoronid-free sediments (bare) and unmanipulated sediments. Although the field experiment did not detect differences in the overall abundance or richness of infauna among the manipulated treatments, some of the individual species did show a positive response to the presence of phoronids and phoronid structure (i.e., mimics). In particular, the polychaete Boccardia proboscidea, the amphipod Monocorophium uenoi, and harpacticoid copepods were facilitated by the presence of phoronids and phoronid structure when there was sediment disturbance. The inconsistency between the results of the survey and of the manipulative experiment may be largely driven by the disturbance caused by the manipulation. However, where P. harmeri has an effect, it is generally positively associated with infaunal abundance that may be attributable to the stabilization of sediments.  相似文献   

15.
The life histories of many species depend first on dispersal to local sites and then on establishment. After dispersal, density-independent and density-dependent mortalities modify propagule supply, determining the number of individuals that establish. Because multiple factors influence recruitment, the dichotomy of propagule versus establishment limitation is best viewed as a continuum along which the strength of propagule or establishment limitation changes with propagule input. To evaluate the relative importance of seed and establishment limitation for plants, we (1) describe the shape of the recruitment function and (2) use limitation and elasticity analyses to quantify the sensitivity of recruitment to perturbations in seed limitation and density-independent and density-dependent mortality. Using 36 seed augmentation studies for 18 species, we tested four recruitment functions against one another. Although the linear model (accounting for seed limitation and density-independent mortality) fitted the largest number of studies, the nonlinear Beverton-Holt model (accounting for density-dependent mortality) performed better at high densities of seed augmentation. For the 18 species, seed limitation constrained population size more than other sources of limitation at ambient conditions. Seedling density reached saturation with increasing seed density in many studies, but at such high densities that seedling density was primarily limited by seed availability rather than microsite availability or density dependence.  相似文献   

16.
Many theoretical studies support the notion that strong dispersal fosters spatial synchrony. Nonetheless, the effect of conditional vs. unconditional dispersal has remained a matter of controversy. We scrutinize recent findings on a desynchronizing effect of negative density-dependent dispersal based on spatially explicit simulation models. Keeping net emigration rates equivalent, we compared density-independent and density-dependent dispersal for different types of intraspecific density regulation, ranging from under-compensation to over-compensation. In general, density-independent dispersal possessed a slightly higher synchronizing potential but this effect was very small and sensitive compared to the influence of the type of local density regulation. Notably, consistent outcomes for the comparison of conditional dispersal strategies strongly relied on the control of equivalent emigration rates. We conclude that the strength of dispersal is more important for spatial synchrony than its density dependence. Most important is the mode of intraspecific density regulation.  相似文献   

17.
Many theoretical studies support the notion that strong dispersal fosters spatial synchrony. Nonetheless, the effect of conditional vs. unconditional dispersal has remained a matter of controversy. We scrutinize recent findings on a desynchronizing effect of negative density-dependent dispersal based on spatially explicit simulation models. Keeping net emigration rates equivalent, we compared density-independent and density-dependent dispersal for different types of intraspecific density regulation, ranging from under-compensation to over-compensation. In general, density-independent dispersal possessed a slightly higher synchronizing potential but this effect was very small and sensitive compared to the influence of the type of local density regulation. Notably, consistent outcomes for the comparison of conditional dispersal strategies strongly relied on the control of equivalent emigration rates. We conclude that the strength of dispersal is more important for spatial synchrony than its density dependence. Most important is the mode of intraspecific density regulation.  相似文献   

18.
《Journal of Asia》2006,9(3):269-274
To understand influence of two species of parasitoids on host population dynamics, adult population dynamics of pine needle gall midge (PNGM), Thecodiplosis japonensis and two species of parasitoids, Inostemma matsutama and Inostemma seoulis were observed using emergence traps from 1986 to 2005. Density of PNGM decreased after outbreaks in 1986 and 1987 and showed density-dependent regulation. Relationships between density of PNGM and its parasitoids were linear except the period of outbreak regardless of parasitoids species. Relationships between host density and parasitism of I. matsutama and I. seoulis were density-independent and inverse density-dependent, respectively. I. seoulis was the dominant parasitoid against PNGM. Interspecific competition between two parasitoids was not strong and temporal niche segregation between two parasitoids was a possible mechanism for coexistence of two parasitoids. The parasitoid complex responded to changes in host density more sensitively than single parasitoid species. These results suggested that two parasitoid can stabilize PNGM population density without strong negative effects on each species of parasitoids.  相似文献   

19.
Individual dry weights have been calculated for ten species of harpacticoid copepods including epibenthic and interstitial forms. The data have been used to calculate a linear relationship between body length and weight enabling the individual dry weight of any harpacticoid of known body length to be estimated. The length-weight relationship has been used to estimate the standing crop of harpacticoids from three different sediment types. In all cases the estimated values were within 20% of the actual standing crop as determined directly by weighing.  相似文献   

20.
A potential consequence of individuals compensating for density-dependent processes is that rare or infrequent events can produce profound and long-term shifts in species abundance. In 1983–1984 a mass mortality event reduced the numbers of the abundant sea urchin Diadema antillarum by 95–99 % throughout the Caribbean and western Atlantic. Following this event, the abundance of macroalgae increased and the few surviving D. antillarum responded by increasing in body size and fecundity. These initial observations suggested that populations of D. antillarum could recover rapidly following release from food limitation. In contrast, published studies of field manipulations indicate that this species had traits making it resistant to density-dependent effects on offspring production and adult mortality; this evidence raises the possibility that density-independent processes might keep populations at a diminished level. Decadal-scale (1983–2011) monitoring of recruitment, mortality, population density and size structure of D. antillarum from St John, US Virgin Islands, indicates that population density has remained relatively stable and more than an order of magnitude lower than that before the mortality event of 1983–1984. We detected no evidence of density-dependent mortality or recruitment since this mortality event. In this location, model estimates of equilibrium population density, assuming density-independent processes and based on parameters generated over the first decade following the mortality event, accurately predict the low population density 20 years later (2011). We find no evidence to support the notion that this historically dominant species will rebound from this temporally brief, but spatially widespread, perturbation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号