首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dominant temperature-sensitive mutation L(3)3DTS (DTS-3) in Drosophila melanogaster causes lethality of heterozygotes during the third larval instar at the restrictive temperature (29°C). Temperature-shift experiments revealed two distinct temperature-sensitive periods, with lethal phases during the third larval instar (which may persist for 4 weeks) and during the late pupal stage. At 29°C mutant imaginal discs are unable to evert in situ, but did evert normally if cultured in the presence of exogenous ecdysterone or when implanted into wild-type larval hosts. The only morphologically abnormal tissue present in the lethal larvae is the ring gland, the prothoracic gland being greatly hypertrophied in third instar DTS-3 larvae. Injection of a single wild-type ring gland rescued these mutant larvae, indicating that the mutant gland is functionally, as well as morphologically, abnormal. Finally, the mutant larvae were shown to have less than 10% of the wild-type ecdysteroid levels. These results are all consistent with a proposed lesion in ecdysteroid hormone production in DTS-3 larvae. A comparison with the phenotypes of other “ecdysone-less” mutants is presented.  相似文献   

2.
Genetic analysis of a strain of Drosophila melanogaster revealed that a recessive mutation [l(1)ERts] causing temperature-sensitive embryonic lethality is located in the distal region of the X chromosome approximately at map position 18. At 22–25°C mutant embryos exhibit normal viability, and all eggs arrest prior to gastrulation if they are reared at 29°C. The mutant is biphasic, exhibiting a maternal effect which is expressed throughout the first 8 hr of development as well as a second temperature-sensitive period (TSP) during the first 3 days of larval life. Larvae exposed to the restrictive temperature (RT) during the second TSP must also spend the remainder of larval and pupal life and the time of normal eclosion at RT to die as fully developed pupae which fail to eclose. Light and electron microscopy of arrested embryos reveal disturbances in the distribution of nuclei, cytoplasm, and yolk and abnormal configurations of rough endoplasmic reticulum. The cause of pupal death during the second lethal period is unknown.  相似文献   

3.
The dopamine (DA) content and the level of juvenile hormone (JH) degradation were studied in females of the wild-type Canton S strain and the ecdysoneless 1 (ecd 1) mutant, which does not produce ecdysone at a restrictive temperature (29°C). Exposure at the restrictive temperature considerably increased the JH-hydrolyzing activity and the DA content in five-day ecd 1 females compared with flies of both strains growing at 19°C and Canton S females exposed at 29°C. In one-day ecd 1 females, the level of JH degradation also increased at the restrictive temperature, but the DA content was low. The effect of ecdysone deficiency on the stress reaction in Drosophila melanogaster females was studied using changes in DA content and JH degradation as the reaction indicators. The ecd 1 mutation did not prevent the initiation of the stress reaction in females exposed at the restrictive temperature, but changed its intensity (stress reactivity). The interaction of 20-hydroxyecdysone with JH and DA in regulating Drosophila reproduction under normal conditions and in stress is discussed.  相似文献   

4.
Salmonella typhimurium cells infected by temperature-sensitive mutants in gene 9 of bacteriophage P22 at the restrictive temperature (39 °C) fail to accumulate functional tail spike protein. We report here studies of the inactive mutant tail spike polypeptide chains synthesized at 39 °C by temperature-sensitive mutants at 15 different sites of gene 9. For all 15 mutants, the gene 9 polypeptide chains were synthesized at 39 °C at rates similar to wild type. The mutant polypeptide chains were stable within the infected cells.The inactive polypeptide chains were tested for three functions displayed by the mature tail spike protein: irreversible binding to phage heads, endorhamnosidase activity, and reaction with anti-tail antibody. The 15 mutant proteins that accumulated at 39 °C lacked all three functions. Since the amino acid substitutions do not affect these functions of the mature protein, the mutant polypeptide chains synthesized at 39 °C have a conformation very different from the wild type, and different from the same proteins when matured at 30 °C. The fact that amino acid substitutions throughout the 76,000 Mr polypeptide chain prevent all three functions suggests that the mutations prevent the correct folding of the gene 9 polypeptide chain at restrictive temperature. Thus, these mutations identify sites in the polypeptide chain critical for protein maturation.Many of the mutant proteins could be activated in the absence of new protein synthesis by shifting infected cells from restrictive to permissive temperature before cell lysis. For these mutants, the immature chains accumulating at high temperature must be reversibly related to intermediates in protein folding or subunit assembly.  相似文献   

5.
The heat-sensitive, lethal mutation l(3)c43hs1 (3–49.0) produces wide variety of defects in the imaginal discs of Drosophila melanogaster. At permissive temperatures (20°C or lower), homozygotes are viable, but sterile. At 22°C, lethality occurs during the late pupal stage, and at 25°C or higher, lethality occurs during the third larval instar. The imaginal-disc abnormalities observed after exposure to restrictive temperatures include: deficiencies of head structures, duplications and deficiencies of the antenna, a homeotic transformation of the arista to tarsus, duplications and deficiencies of wing and haltere structures, differentiation of amorphous cuticular material in the wing blade, an increase in the number of sex-comb teeth, and disruption of the normal segmentation of the tarsus. Exposure to 27°C for 24 hr at different times in the life cycle revealed that each of these defects has a characteristic temperature-sensitive period (TSP) during the larval stages. Injection of wing discs before and after their TSP showed that the mutation is expressed autonomously. These results are discussed in relation to the role that the l(3)c43+ gene plays in the development of imaginal discs.  相似文献   

6.
A temperature-controlled expression system for a foreign gene in Saccharomyces cerevisiae was constructed. In this system, a MATa hmlα2-102 HMRa sir3–8ts double mutant was used as host, and a DNA fragment bearing the promoter and pre- or pre-pro regions of the MFα1 gene encoding the α-factor of S. cerevisiae was used as a promoter for expression of a foreign gene cloned on a vector. When the host cells were incubated at a restrictive temperature for the sir3–8ts mutation (30°C to 35°C) they showed the α mating type and a PHO5 DNA fragment of S. cerevisiae, encoding repressible acid phosphatase, connected downstream of the MFα1 promoter was expressed. But when they were incubated at permissive lower temperature (25°C), at which they have the a mating type, the PHO5 DNA was not expressed. Acid phosphatase activity was increased 30-fold by shifting the incubation temperature from 25°C to 30°C. In this system it may also be possible to express a foreign gene at lower temperature but shut off its expression at higher temperature by connecting the gene to a promoter DNA of an a-specific gene.  相似文献   

7.
In the three maternal effect lethal mutant strains of D. melanogaster described in this report, the homozygous mutant females produce defective eggs that cannot support normal embryonic development. The embryos from these eggs begin to develop for the first 2 hr after fertilization in an apparently normal way, forming a blastula containing a cluster of pole cells at the posterior end and a layer of syncytial blastoderm nuclei. During the subsequent transition from a syncytial to a cellular blastoderm, cell formation in the blastoderm is either partially or totally blocked. In mutant mat(3)1 no blastoderm cells are formed, indicating that there are separate genetic controls for pole cells and blastoderm cells. The other two mutants form an incomplete cellular blastoderm in which certain regions of the blastoderm remain noncellular. The noncellular region in mutant mat(3)3 is on the posterior-dorsal surface, covering about 30% of the total blastoderm. In mutant mat(3)6 blastoderm cells are formed only at the anterior and posterior ends, separated by a noncellular region that covers about 70% of the total blastoderm. The selective effects on blastoderm cell formation in the three mutants emphasize the importance of components present in the egg before fertilization for the transition from a syncytial to a cellular blastoderm.The genes defective in the three mutants are essential only for oogenesis and not for any other period of development, as indicated by a strict dependence of the lethal phenotypes on the maternal genotypes. Heterozygous embryos from the eggs of homozygous mutant females die, whereas homozygous mutant embryos from the eggs of heterozygous females develop into viable adults.One of the mutants, mat(3)3, has a temperature-sensitive phenotype. Homozygous mat(3)3 females maintained at a restrictive temperature of 29°C show the lethal maternal effect. However, at a permissive temperature of 20°C the females produce viable adult progeny. The temperature-sensitive period in mat(3)3 females occurs during the last 12 hr of oogenesis, consistent with the maternal effect phenotype of the mutant.  相似文献   

8.
Explants of the central nervous system of Drosophila have been shown to produce nerve fibres in vitro. The effects of various culture conditions on fibre outgrowth have been examined. Nervous tissue could form nerve fibres in vitro when the explants were obtained from mid-embryonic or early- and mid-pupal stages, but not when they were obtained from larvae or late-pupae. The effect of the temperature-sensitive mutation shibirets has been investigated by placing mutant explants into culture at permissive (17°C) or restrictive (28°C) temperatures. No differences in the extent of fibre outgrowth between wild-type and shibirets were observed, regardless of the temperature of cultivation.  相似文献   

9.
In the mutant mat(3)3 of Drosophila melanogaster, there is a temperature-sensitive maternal effect on blastoderm formation. When oogenesis occurs in homozygous mat(3)3 females at the fully restrictive temperature of 29°C, the embryonic progeny form a defective cellular blastoderm in which cells are either completely or partially missing from a posterior-dorsal region, and the embryos die before hatching. Transplantation tests for the presence in the embryos of primordial imaginal cells capable of developing into adult structures showed a relatively high yield of eye and antenna structures, an intermediate yield of labium structures, and low or zero yields of wing, haltere, and leg structures. These results are consistent with the fate mapping of the primordial imaginal cells by analysis of gynandromorph mosaics; the eye and antenna map in the fully cellular region of the mutant blastoderm, the labium near the border of the defective region, and the wing, haltere, and legs within the defective region. When oogenesis oocurs at a lower temperature, the lethal maternal effect in mat(3)3 is reversed, but there is a nonlethal effect on larval and adult progeny of the mat(3)3 females. Many of the adults are missing one or more cuticular structures, usually a leg, haltere, or abdominal segment, and many of the larvae are missing the corresponding imaginal discs from which the thoracic structures are derived. These selective effects on imaginal development appear to be caused by maternally induced blastoderm defects that are less extensive at the lower temperature of oogenesis.  相似文献   

10.
CELLS infected with attenuated type 1 poliovirus (LSc) at 39° C synthesize only 20% of the viral proteins produced at 35° C. Polyacrylamide gel electrophoresis of viral peptides shows that only four peptides (with molecular weights of 230,000, 212,000, 196,000 and 160,000) are produced at the restrictive temperature1. It was suggested that the last three are cleavage products of the 230,000 molecular weight peptide. Furthermore, since smaller peptides were never observed it was suggested that proteolysis might eliminate them from infected cells at 39° C. Nonsense and deletion mutations cause degradation of incomplete peptides of β-galactosidase2 and the lac repressor3. We have studied whether there is significant proteolysis of the peptides of attenuated poliovirus in vivo at 39° C. There is extensive degradation of viral peptides at the restrictive temperature and essentially no degradation at the permissive temperature. The peptides of wild type virulent virus are not degraded at either 35° C or 39° C.  相似文献   

11.
Little is known of the molecular mechanisms by which temperature-sensitive mutations interfere with the formation of biologically active proteins. We have studied the effects of such mutations at 13 different sites on the properties of the multifunctional tail spike protein of bacteriophage P22, a thermostable structural protein composed of 76,000 Mr chains.Using multiple mutant strains blocked in capsid assembly, we have examined the free mutant tail spikes that accumulate in active form at permissive temperature. When assayed for the ability to bind to phage heads at the restrictive temperature, the mutant proteins were as active as the wild type. Similarly, when assayed for the ability to adsorb to bacteria at restrictive temperature, the mutant proteins were as active as the wild type. Thus the temperature-sensitive phenotypes of the mutants are not due to the thermolability of these functions in the mature mutant protein.The wild-type protein is heat-resistant, requiring incubation at 90 °C, to give a half-time of inactivation of ten minutes. The 13 ts mutant proteins, once matured at 30 °C, were as resistant as the wild-type protein to inactivation at elevated temperatures.Though the mature wild-type protein is heat stable, its maturation is heat-sensitive; the number of polypeptide chains synthesized at 30 °C and 39 °C is the same, but the yield of active tail spikes at 39 °C is only 25% of the yield at 30 °C.The results show that the amino acid substitutions in the mutant proteins, though lethal for the formation of the virus at 39 °C, do not affect the thermostability of the mature tail spike protein formed at 30 °C. They may act by destabilizing thermolabile intermediates in the folding or subunit assembly of the tail spike protein.  相似文献   

12.
We studied the fertility of D. melanogaster females heterozygous for the dominant temperature sensitive mutation l(2)M167 DTS , which exerts a recessive lethal effect at 25°C, under the conditions of stable temperature regimes 25, 28, and 29°C and changing regimes 25 → 29°C and 29 → 25°C. It was shown that inhibition of total activity of oogenesis due to a decreased number of functioning ovarioles is one of the mechanisms underlying the decreased fertility of l(2)M167 DTS /+ females. Analysis of individual fertility of each female confirmed also the role of sterility as a component of fertility of the females. Sterilization was realized due both to full depletion of functioning ovarioles and disturbed mechanism of laying the mature eggs onto a substrate as a result of violation of the feedback blocking normal ovulation, which led to the breakdown of ovarioles and filling of the abdominal cavity with mature oocytes. A significant polymorphism of heterozygous females by their fertility was observed. The intensity of sterilization and mortality of l(2)M167 DTS /+ females sharply increased at an elevated temperature (29°C), especially at the pupal stage.  相似文献   

13.
We investigated the nature of the defect in the temperature-sensitive mutant of Moloney murine sarcoma virus (Mo-MuSV), termed ts110. This mutant has a temperature-sensitive defect in a function required for maintenance of the transformed state. A nonproducer cell clone, 6m2, infected with ts110 expresses P85 and P58 at 33°C, the transformed temperature, but only P58 is detected at the restrictive temperature of 39°C. Shift-up (33°C → 39°C) and in vitro experiments have established that P85 is not thermolabile for immunoprecipitation. Previous temperature-shift experiments (39°C → 33°C) have shown that P85 synthesis resumes after a 2–3 hr lag period. Temperature shifts (39°C → 33°C) performed in the presence of actinomycin D prevented the synthesis of P85, whereas P58 synthesis did not decline for 5 hr, suggesting that P58 and P85 are translated from different mRNAs. The shift-up experiments also indicated that, once made, the RNA coding for P85 can function at the restrictive temperature for several hours. MuSV-ts110-infected cells superinfected with Mo-MuLV produced a ts110 MuSV-MuLV mixture. Sucrose gradient analysis of virus subunit RNAs revealed a ~28S and a ~35S peak. Electrophoresis of the ~28S poly(A)-containing RNA from ts110 virus in methyl mercuric hydroxide gels resolved two RNAs with estimated sizes of 1.9 × 106 and 1.6 × 106 daltons, both smaller than the wild type MuSV-349 genomic RNA (2.2 × 106 daltons). RNA in the ~28S size class from virus preparations harvested at 33°C was found to translate from P85 and P58, whereas, the ~35S RNA yielded helper virus Pr63gag. In contrast, virus harvested at 39°C was deficient in P85 coding RNA only. Peptide mapping experiments indicate that P85 contains P23 sequences, a candidate Moloney mouse sarcoma virus src gene product. Taken together, these results suggest that two virus-specific RNAs are present in ts 110-infected 6m2 cells and rescued ts110 pseudotype virions at 33°C, one coding for P85, whose expression can be interfered with by shifting the culture to 39°C; the other coding for P58, whose expression is unaffected by temperature shifts. P85 is a candidate gag-src fusion protein, while P58 contains gag sequences only.  相似文献   

14.
Out of 25,000 EMS-treated third chromosomes examined, ten dominant temperature-sensitive (DTS) lethal mutations which are lethal when heterozygous at 29 degrees C but survive at 22 degrees C were recovered. Seven of the eight mutations mapped were tested for complementation; these mutants probably define eight loci. Only DTS-2 survived in homozygous condition at 22 degrees C; homozygous DTS-2 females expressed a maternal effect on embryonic viability. Two of the mutant-bearing chromosomes, DTS-1 and DTS-6, exhibited dominant phenotypes similar to those associated with Minutes. Each of the seven mutants examined exhibited a characteristic phenotype with respect to the time of death at 29 degrees C and the temperature-sensitive period during development. Only DTS-4 exhibited dominant lethality in triploid females.  相似文献   

15.
The purpose of this investigation was to use tritium-suicide enrichment with a mutagenized population of wild-typeNeurospora crassa to isolate cold-sensitive mutants with conditional defects in the production of cytoplasmic ribosomes. Eighty-six cold-sensitive mutant strains were obtained following tritium-suicide enrichment using [5-3H]uridine. Zone sedimentation analysis of cytoplasmic ribosomes produced by the strains at 10°C (the nonpermissive temperature) indicated that one strain,PJ31562, is defective in the accumulation of ribosomal subunits at that temperature. The properties of strainPJ31562 are: (1) At 10°C the growth rate is 28 times slower than at 25°C, whereas the factor for the wild type is 5.1. At 25°C the mutant's growth rate is 90% that of the wild type. (2) At 10°C the mutant accumulates the two ribosomal subunits, 60 and 37 S, in markedly disproportionate amounts apparently as a result of the underproduction of, or an instability of, the 17 S ribosomal RNA component of the small ribosomal subunit. At 25°C the mutant strain still exhibits a disproportionality in ribosomal subunit accumulation but to a much lesser degree than at 10°C. (3) Genetic studies have shown that a single nuclear gene is responsible for both the cold sensitivity and ribosome biosynthesis defect of strainPJ31562. The mutation involved is located in linkage group IV and appears to be closely linked to, and not allelic with, the cold-sensitive mutation carried by strainPJ30201 which has been shown previously to exhibit a similar phenotype with respect to ribosomal subunit accumulation, and which defines thecrib-1 locus. Thus tritium-suicide enrichment can be used to isolate cold-sensitive mutants ofNeurospora among which a relatively low frequency have conditional defects in ribosome production.  相似文献   

16.
We have investigated the capacity of a murine cell line with a temperature-sensitive (ts) mutation in the DNA polymerase α (Pola) locus and a series of ts non-Pola mutant cell lines from separate complementation groups to stimulate DNA synthesis, in senescent fibroblast nuclei in heterokaryons. In the Pola mutant × senescent heterodikaryons, both human and murine nuclei display significantly diminished levels of DNA synthesis at the restrictive temperature (39.5°C) as determined by [3H]thymidine labeling in autoradiographs. In contrast, all of the non-Pola mutants, as well as the parental (wild-type) murine cells, induced similar levels of DNA synthesis in both parental nuclei at the nonpermissive and permissive temperatures. Similarly, young human fibroblasts are also able to initiate DNA synthesis in heterokaryons with the ts Pola mutant at the two temperatures. In order to determine if complementation of the non-Pola mutants requires induction of serum responsive factors in the senescent cells, fusion studies of similar design were conducted with young and old human fibroblasts incubated in low serum (0.2%) for 48 hr prior to and after cell fusion. Again, a diminished level of DNA synthesis was observed at 39.5°C in the Pola mutant x senescent cell heterokaryons. In these low-serum studies, both parental nuclei in the Pola x young cell heterokaryons and the human nuclei in heterokaryons with one of the non-Pola mutants (FT107) also displayed diminished levels of DNA synthetic activity. All of the other mutants are able to support similar levels of synthetic activity at both temperatures in the presence of reduced serum. The nature of the mutation in three of the non-Pola lines has not been determined but, like the Pola mutant cells, are inhibited in the G1 phase of the cell cycle when incubated at the nonpermissive temperature (39.5°C). The fourth non-Pola mutant line is known to have at least one ts mutation in the cdc2 gene and is inhibited in the G2 phase when exposed to 39.5°C. These results suggest that there may be a functional deficiency of pol α in senescent human fibroblasts, and this replication factor may be one of the rate-limiting factors involved in loss of the capacity to initiate DNA synthesis in senescent cells. © 1994 Wiley-Liss, Inc.  相似文献   

17.
The sex-linked temperature-sensitive mutation shibirets of Drosophila melanogaster shows a maternal effect causing embryonic lethality at 29°C. The maternal influence is due to gene action autonomous to the ovary. Embryos carrying the paternally derived wild-type gene can survive at 29°C but only if heat pulses are begun at least 9 hr after oviposition. The paternal rescue is presumably due to zygotic gene action at this locus beginning part way through embryogenesis. A maternal wild-type genome, however, can produce shi embryos that have sufficient shi+ product to support embryogenesis up to the hatching stage even at 29°C.  相似文献   

18.
19.
A cell extract prepared from the lig-ts7 mutant of Escherichia coli is able to carry out a complete round of DNA replication of colicin E1 plasmid at 25 °C. However, the apparent rate of elongation of the progeny strands at this temperature is much smaller than in an extract from the thermoresistant revertant cells. Chain elongation in the lig-ts extract is depressed by raising the incubation temperature from 25 °C to 32 °C, whereas that in the lig+ revertant extract is not. The rate of closure of the progeny strands of newly formed open circular molecules is also reduced in the lig-ts extract, even at 25 °C.The DNA pulse-labelled with the lig-ts extract for 30 seconds at 32 °C contains a large amount of short DNA fragments of approximately 7 S, in addition to DNA chains of various sizes between 7 S and 17 S (unit length). Most of these replicating molecules are converted to completely replicated closed circular molecules upon chasing with a lig+ extract. DNA-DNA hybridization experiments show that molecules replicated to various extents contain 7 S DNA fragments of both strands, but more of the L-strand component, whose 5′-to-3′ direction corresponds to the overall direction of unidirectional replication. The longer DNA chains are enriched in the H-strand component.The cell extracts used for the plasmid DNA replication have an activity which converts alkali-labile closed circular plasmid DNA containing apurinic sites to alkali-stable closed circular molecules. Addition of nicotinamide mononucleotide leads to conversion of the alkali-labile DNA to open circular molecules. In the replication system with the cell extract, however, the compound does not interfere with elongation of progeny strands. Chain elongation in the lig-ts extract at 25 °C is not significantly affected by nicotinamide mononucleotide. Thus, the 7 S DNA fragments formed with the lig-ts extract are unlikely to be generated as a result of incomplete repair of misincorporated nucleotides. We conclude that both strands of colicin E1 plasmid DNA replicate discontinuously.  相似文献   

20.
Interaction of the photoperiodic conditions of development of maternal females (day lengths of 2 to 22 h at 20°C) with the thermal regime of development of their progeny (temperature of 12 to 15°C at day length of 12 h) in determination of prepupal diapause in Trichogramma piceum was studied under laboratory conditions. At 15°C the diapause was practically absent. At lower temperatures, the proportion of diapausing prepupae was maximal (25% of larvae at 14°C, 70% of larvae at 13°, and 80% of larvae at 12°C) if the maternal females developed under short day conditions (10–12 h). When maternal females developed at day lengths of 18–20 h, diapause was rarely recorded at all temperatures, while ultra-short (less than 8–10 h) days also caused a decrease in the proportion of diapausing progeny. The right (ecologically important) threshold of this maternal long-day photoperiodic response was about 14–15 h independently of the temperature during the progeny development. These results make it possible to clarify the mechanism of the “maternal photoperiodic correction of the progeny thermal response.” Although the impact of the maternal photoperiodic response can be revealed only within a very narrow thermal range, the relative strength of the diapause-inducing effect of different day lengths is independent of the temperature regimen of the progeny development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号