首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • 1.1. The development of Gallena mellonella is strongly affected by a low temperature of 18°C (the last instar persists for more than one year, instead of about 9 days at 30°C). At 18°C the last instar Galleria mellonella larvae respond to juvenilizing treatment—chilling stress or juvenile hormone analogue—with a very low percentage or no supernumerary moults, respectively.
  • 2.3. Experiments in which larvae subjected to such treatments were transferred from 18°C to 30°C and vice versa showed that for the realization of the larval programme after chilling stress application the higher (30°C) temperature is needed.
  • 3.4. In last instar larvae reared at 18°C there coexist very high juvenile hormone titre and high juvenile hormone esterase activity.
  • 4.5. This phenomenon which is found in both, chilled and unchilled larvae, is discussed.
  相似文献   

2.
Sesamia nonagrioides (Lepidoptera: Noctuidae) larvae reared under long day (LD; 16L:8D) conditions pupate after 5 or 6 larval instars, whereas under short day (SD; 12L:12D) conditions they undergo up to 12 additional molts before pupating. This extended period of repeated molting is maintained by high levels of juvenile hormone (JH). Previous work demonstrated that both LD and SD larvae decapitated in the 6th instar pupate but further development is halted. By contrast, about one-third of SD larvae from which only the brain has been removed, undergo first a larval molt, then pupate and subsequently developed to the adult stage. Debrained LD larvae molt to larvae exceptionally but regularly pupate and produce adults. Implanted brains may induce several larval molts in debrained recipient larvae irrespectively of the photoperiodic conditions. The results of present work demonstrate that the prothoracic glands (PGs) and the corpora allata (CA) of debrained larvae continue to produce ecdysteroids and JHs, respectively. PGs are active also in the decapitated larvae that lack JH, consistent with the paradigm that CA, which are absent in the decapitated larvae, are the only source of this hormone. Completion of the pupal-adult transformation in both LD and SD debrained insects demonstrates that brain is not crucial for the development of S. nonagrioides but is required for diapause maintenance. Application of JH to headless pupae induces molting, presumably by activating their PGs. It is likely that JH plays this role also in the induction of pupal-adult transformation in debrained insects. Application of the ecdysteroid agonist RH 2485 (methoxyfenozide) to headless pupae also elicits molting: newly secreted cuticle is in some cases thin and indifferent, in other cases it bears distinct pupal or adult features.  相似文献   

3.
Juvenile hormone esterase titres were monitored in gate I and gate II last instar larvae of Trichoplusia ni using JH III as substrate. Two peaks of activity were observed for both gate I and gate II larvae, although the first and second juvenile hormone esterase peaks for the gate II larvae are extended and delayed one day, respectively. Head or thoracic ligations before the prepupal stage lower or block the appearance of both esterase peaks. Juvenile hormone I and II, as well as homo and dihomo juvenoids can induce the second juvenile hormone esterase peak in both normal and ligated larvae, and increase the esterase titre during the first peak in nonligated larvae. Induction of the juvenile hormone esterases is possible in non-ligated larvae as soon as the moult to the last instar has occurred and in ligated larvae as soon as the first esterase peak has started to decline. Distinct mechanisms of regulation are present for the first and second juvenile hormone esterase peaks. Juvenile hormone does not appear to be involved in regulating its own metabolism by directly inducing the first esterase peak; however, evidence is consistent with a brief burst of juvenile hormone which occurs prior to pupation inducing the production of the second peak of juvenile hormone esterase activity.  相似文献   

4.
When tobacco hornworm (manduca sexta) larvae are starved for 5 days immediately after ecdysis to the 5th instar, then fed normal diet, they undergo a supernumerary moult instead of metamorphosis. During starvation the titre of juvenile hormone in the haemolymph increased to a maximum of 3 ng juvenile hormone I equivalents/ml (determined by the black Manduca larval bioassay) on the fourth day of starvation, then began a decline which continued through the subsequent feeding period. The changes in juvenile hormone titre were not attributable to changes in haemolymph volume during starvation (only a 5% decrease) and subsequent feeding. During starvation the esterase activity of the haemolymph declined 4-fold with a 2-fold larger decrease in the DFP-insensitive, presumably juvenile hormone specific, esterase activity. Both the total and the juvenile hormone-specific esterase activity then increased as a function of larval weight during the subsequent feeding period. As growth was slow in the prolongedly starved larvae, sufficient juvenile hormone was present at the time of prothoracicotropic hormone (PTTH) and ecdysteroid release at the beginning of the fourth day of feeding to prevent metamorphosis.  相似文献   

5.
The summer fruit tortrix moth is very susceptible to compounds with juvenile hormone activity. Ro 13-5223, a non-terpenoid carbamate, is 3–4 orders of magnitude more active in inhibiting metamorphosis in the last-instar larvae than juvenile hormone I. Larvae reared in permanent contact with this substance are characterised by higher juvenile hormone esterase activity but lower α-naphthyl esterase activity when compared to the untreated controls. In vitro Ro 13-5223 inhibits juvenile hormone hydrolysis but only in dosages which are far above the concentrations found in haemolymph of larvae exposed to the 14C-labelled compound. It does not serve as a substrate for juvenile hormone esterase in vitro even though it induces the enzyme activity in vivo. All these characteristics may account for the very high biological activity of Ro 13-5223 which disrupts humoral coordination of insect development.  相似文献   

6.
Juvenile hormone esterase (JHE) activity, ecdysone titre, and developmental competence of the epidermis were determined in last instar larvae and pupae of Galleria mellonella. Haemolymph JHE activity reaches a peak before increases are observed in ecdysone titre both during larval-pupal and pupal-adult metamorphosis. JHE activity is low during the penultimate larval instar although general esterase activity is relatively high. In last instar larvae two ecdysone peaks are noted after the increase in JHE activity. Furthermore, epidermal cell reprogramming occurs just after the increase in haemolymph JHE activity and possibly before the first increase in ecdysone titre. This was tested by injection of high doses of β-ecdysone into last instar larvae of different ages resulting in rapid cuticle deposition. Reprogramming occurred if the resulting cuticle was of the pupal type. These correlative observations may increase our understanding of the relative importance of an ecdysone surge in the absence of JH in reprogramming of the insect epidermis.  相似文献   

7.
The regulation of juvenile hormone esterase in last-instar diapause and nondiapause larvae of Ostrinia nubilalis was investigated using topically applied juvenile hormone I and a juvenile hormone mimic, methoprene. The influence of the head on juvenile hormone esterase was also investigated. Both juvenile hormone and methoprene caused increases in esterase levels when applied to feeding animals. Neither the hormone nor methoprene was capable of elevating nondiapause esterase activity to levels comparable to those found in untreated prediapause larvae. The esterase levels could be elevated in the larval body, without the head, during prepupal development of nondiapause larvae and in post-feeding diapause larvae. In both cases, juvenile hormone or methoprene induced juvenile hormone esterase activity in head-ligated animals. Topically applied methoprene prolonged feeding and delayed the onset of diapause. When methoprene was applied to larvae that had entered diapause, it disrupted diapause by inducing a moult.  相似文献   

8.
The juvenile hormone esterase (JHE) activity in Galleria mellonella larvae was measured after exposure to different experimental conditions that affect larval-pupal transformation. The data show that stimulation of production of JHE is closely coupled with the developmental signals that intiate larval-pupal metamorphosis. Injury, which delays pupation, delays the appearance of JHE activity if the larvae are injured within 48 hr after the last larval moult. Chilling of day-0 larvae induces a supernumerary larval moult and inhibits the appearance of JHE. However, JHE activity increases in chilled larvae when their commitment for an extra larval moult is reversed by starvation. Starvation is effective in reversing the commitment for an extra larval moult if commenced within 48 hr after chilling, thereby suggesting a critical period for that commitment. These data suggest that the stimulus for JHE synthesis and/or release occurs approximately within 48 hr after the last larval ecdysis. A series of studies involving implantation of brain, suboesophageal ganglion and fat body into chilled, as well as chilled and ligated larvae suggest that a factor from the brain is involved in stimulation or production of JHE in Galleria larvae.JH, which suppresses JHE activity in day-3, -5 and early day-6 Galleria larvae, stimulates the production of JHE in late day-6 larvae, suggesting that reprogramming in larval fat body may occur on day 6 of the last larval stadium.  相似文献   

9.
The last larval moult of Galleria mellonella is induced by an elevation of ecdysteroid titre to more than 200 ng/g. After ecdysis the titre remains very low until 70 hr of the last-instar when a slight elevation in ecdysteroid concentration initiates the onset of metamorphosis. An ecdysteroid peak (275 ng/g), which occurs between 108 and 144 hr, is associated with wandering and cocoon spinning. Pupal ecdysis follows about 20 hr after a large ecdysteroid peak (780 ng/g) with a maximum in slowly-mobile prepupae (160 hr of the last larval instar). The ecdysteroid decrease between the two peaks coincides with the period when the larvae exposed to unfavourable conditions enter diapause. The pupal-adult moult is initiated by a high ecdysteroid peak (1500–2500 ng/g) in early pupae and imaginal cuticle is secreted in response to a smaller peak (ca. 500 ng/g) in the middle of pupal instar.Until early pupae, the ecdysteroid content is regulated by the prothoracic glands. In decapitated larvae the glands become spontaneously active after 30–40 days and the body titre of ecdysteroids undergoes an increase; the glands revert to inactivity when the insects accomplish secretion of pupal cuticle. A similar ecdysteroid increase occurs within 10 days when the decapitated larvae receive implants of brains releasing the prothoracicotropic neurohormone (PTTH). In either case, the pupation-inducing increase of ecdysteroids is 3 times higher than the large ecdysteroid peak in the last-instar of intact larvae. This indicates that the function of prothoracic glands in intact larvae is restrained, probably by the juvenile hormone (JH). Exogenous JH suppresses the spontaneous activation of the prothoracic glands in decapitated larvae and reduces the ecdysteroid concentration in those larvae (both decapitated and intact), whose glands were activated by PTTH. Furthermore, JH influences the PTTH release from the brain in situ: depending on JH concentration and the age and size of treated larvae, the PTTH liberation is either accelerated or delayed.Neither in G. mellonella larvae, nor in the diapausing pupae of Hyalophora cecropia and Celerio euphorbiae, does JH directly activate the prothoracic glands. It is suggested that the induction of the moult by JH in decerebrate insects, which has been observed in some species, is either due to indirect stimulation of ecdysteroid production or to increased sensitivity of target tissues to ecdysteroids. In G. mellonella, a moult occurs at a 5–15 times lower than usual ecdysteroid concentration when the last-instar larvae are exposed to JH.  相似文献   

10.
A detailed analysis was made of the locomotor activity of Acheta domesticus under conditions of 12 hr light and 12 hr darkness (LD 12 : 12) and of continuous darkness (DD). Under LD 12 : 12 it was found that there are three types of insects: (1) those beginning the period of increased locomotor activity immediately after darkness falls, (2) considerably before this time, and (3) considerably after this time. Under DD conditions the greater amount of the insects have a free-running rhythm shorter than 24 hr, while only a small percentage have a rhythm of more than 24 hr.Destruction of the neurosecretory cells of the pars intercerebralis by means of radio waves leads to the formation of hyperactivity and loss of locomotor activity rhythm when more than half of these cells are destroyed.Injection of reserpine into the insect's haemolymph with doses of 10 μg/g of body weight results in a reduction in locomotor activity and produces arrhythmicity for 2 to 3 days under LD 12 : 12 conditions. Under DD conditions, however, this same dose results in a total and irretrievable loss of free-running rhythm. Histological studies of the brain of crickets following injection of reserpine show a large degree of accumulation of neurosecretion in the cells of the pars intercerebralis as compared with control insects.A hypothesis is put forward as to the way in which the brain centres regulating locomotor rhythm act in crickets.  相似文献   

11.
The hormonal control of the facultative diapause of the codling moth has been investigated. The diapause can be divided into 4 phases or periods: (1) diapause induction by short-day conditions (SD) in young larvae, (2) initiation of the diapause in the early last larval instar by a high titre of juvenile hormone, (3) onset and maintenance of diapause with inactivity of the neuroendocrine system, as evidenced by the results of neck-ligation experiments, (4)termination of diapause by the production of ecdysteroid.Diapause-induced larvae pupated after spinning the cocoon, if the state of induction was changed by injection with the anti-juvenile hormone precocene II at the beginning of the last larval instar and subsequent results of neck-ligation experiments, (4) termination of diapause by the production of ecdysteroid. treated with juvenile hormone during the first 1.5 days after the last larval moult and subsequently reared under SD. Under LD, continuous application of juvenile hormone during the last larval instar and after spinning did not prevent the insects from moulting to either a supernumerary larva, a pupa or a larval-pupal intermediate. Termination of diapause, i.e. pupation, was achieved by injecting diapausing larvae with 20-hydroxyecdysone. Although juvenile hormone was found to have a prothoractropic effect in diapausing larvae, no pupal moult could be induced by the application of the hormone. Contrary to the hormonal situation before pupation of nondiapausing larvae, no juvenile hormone could be detected before or during the pupation of larvae after diapause.  相似文献   

12.
ABSTRACT. According to the different reactions to the juvenoid Altosid®, the last larval instar (L5) of Laspeyresia pomonella (L.) (Tortricidae) reared under 'long day' conditions (constant light) was subdivided into three sensitive phases: an additional larval instar, a larval–pupal intermediate, or a pupa. Under short day conditions, the prothoracotropic effect of juvenile hormone (JH) in L5, which have a continuous high titre of JH during the whole instar, indicated that it is not a particular titre of JH but a rise in the titre that can induce the production of moulting hormone. Neck-ligation experiments showed that JH acts not directly on the prothoracic glands but via the head, probably via the neurosecretory system. The meaning of the JH-peak in mature L5 reared under long days was determined either by injections with the anti-JH, precocene II, in combination with applications of Altosid, or by forcing precocene-treated larvae to a precocious moult by injecting them with ecdysterone. Precocene delayed, and JH accelerated pupation if administered 4.5 days after the L5 -moult. JH was also found to stimulate the growth and differentiation of the imaginal discs. Moulting hormone in long-days reared insects was detected one day after the larvae had spun their cocoon, with a maximum on the second day after spinning. The hormone was also present in freshly moulted pupae. Neck-ligation of mature larvae indicated that the delay between activation of the prothoracic glands and the production of an effective amount of moulting hormone is less than one day.  相似文献   

13.
The caterpillars of Sesamia nonagrioides developing under long-day (LD) photoperiod pupate in the 5th or 6th instar whereas under short day (SD) conditions they enter diapause and undergo several extra larval molts. The diapause is terminated within 1-3 instars upon transfer of SD larvae to the LD conditions. Brain removal from the 6th instar larvae promotes pupation followed by imaginal development; however, one third of the SD larvae and 12% of the LD larvae debrained at the start of the instar first undergo 1-2 larval molts. The incidence of larval molts is enhanced by the brain implants. Exclusively pupal molts occur in the LD larvae debrained late in the 6th instar. Decapitation elicits pupation in both LD and SD larvae, except for some of the 4th and 5th and rarely 6th instar that are induced to a fast larval molt. The pupation of decapitated larvae is reverted to a larval molt by application of a juvenile hormone (JH) agonist. No molts occur in abdomens isolated from the head and thorax prior to the wandering stage. Abdomens isolated later undergo a larval (SD insects) or a pupal (LD insects) molt. Taken together the data reveal that in S. nonagrioides (1) several larval molts followed by a pupal and imaginal molt can occur without brain; (2) an unknown head factor outside the brain is needed for the pupal-adult molt; (3) brain exerts both stimulatory and inhibitory effect on the corpora allata (CA); (4) larval molts induced in CA absence suggest considerable JH persistence.  相似文献   

14.
Haemolymph levels of juvenile hormone esterase, 1-naphthyl acetate esterase, and juvenile hormone were measured in synchronously staged diapause and nondiapause larvae of the European corn borer, Ostrinia nubilalis. Juvenile hormone esterase levels were monitored using juvenile hormone I as a substrate while juvenile hormone titres were measured with the Galleria bioassay. Haemolymph of nondiapause larvae showed two peaks of juvenile hormone hydrolytic activity: one near the end of the feeding phase and a smaller one just prior to pupal ecdysis. These peaks of enzyme activity correlated well with the low levels of haemolymph juvenile hormone. Juvenile hormone titres were high early in the stadium then showed a second peak during the prepupal stage coinciding with low esterase activity. Diapause haemolymph had peak juvenile hormone esterase activity nearly 4 times the nondiapause level, reaching a peak near the end of the feeding phase. Diapause-destined larvae retained high juvenile hormone titres even during the rise of the high esterase levels. 1-naphthyl acetate esterase levels did not correlate with the juvenile hormone esterase levels in either the diapause or nondiapause haemolymph. High levels of 1-naphthyl acetate esterase activity were associated with moulting periods.  相似文献   

15.
The suboesophageal ganglion of the silkworm, Bombyx mori synthesizes sufficient diapause hormone to produce diapause eggs, regardless of the photoperiodic conditions experienced during the larval stages. When larvae destined to produce non-diapause eggs are implanted with the brain-suboesophageal ganglion complex from larvae which have been reared under short-day conditions, the resulting adults lay diapause eggs. The larvae receiving the complex from larvae reared under long-day conditions gave rise to adults which did not produce any diapause eggs. The brains from pupae which have been reared under long-day conditions show an activity inhibiting the secretion of diapause hormone by the suboesophageal ganglion. The mechanism through which the brain controls the secretion of diapause hormone from the suboesophageal ganglion can be modified by photoperiodic conditions during the larval stages.  相似文献   

16.
The effects of juvenile hormone, antiallatotropins, selected surgical procedures and starvation on the juvenile hormone esterase levels in Galleria larvae and pupae were investigated. JH reduced JH esterase activity in larvae but induced the enzyme in 1-day-old pupae. In vitro studies confirmed that the peak of synthesis and/or release of JH esterase from the fat body of last instar larvae occurred 4 days after ecdysis. These studies also showed that fat body from JH-treated larvae released much less enzyme than controls. Antiallatotropins, precocene 2 and ZR 2646 also reduced JH esterase levels in larvae, but ZR 2646 induced JH esterase in pupae. In starved larvae, JH esterase did not increase during the first five days. A minimum of 36 hr of feeding was necessary for the larval esterase activity to increase on schedule on day 4 of the last larval stadium. When day-l larvae were ligated behind the head or the prothorax, they had lower JH esterase levels and yet showed a slight increase in the enzyme when the larvae reached the age of 4 days. The significance of these results is discussed in relation to the possible control of esterase activity during metamorphosis.  相似文献   

17.
Treatment of post-feeding (early day 3; wandering phase) last-stadium larvae of the cabbage looper, Trichoplusia ni, with the anti-juvenile hormone, fluoromevalonolactone, prevented the normal ecdysis to the pupa. It caused the formation of larval-pupal intermediates, a dose-dependent delay in the time of tanning, and a decrease in juvenile hormone esterase activity at the time of the prepupal juvenile hormone esterase peak. Fluoromevalonolactone was inactive as juvenile hormone esterase inhibitor in vitro. Conversely, juvenile hormone I accelerated the time of tanning, induced the early appearance of juvenile hormone esterase activity, and prevented adult eclosion. Although most of the larvae that were treated with fluoromevalonolactone immediately after the prepupal burst of juvenile hormone (late on day 3; post-spinning phase) still became larval-pupal intermediates, the time of tanning and juvenile hormone esterase activity were close to normal. Topical treatment of day-3 larvae with radiolabelled juvenile hormone I resulted in the rapid appearance and decline of radiolabelled juvenile hormone I in the haemolymph which was associated with the increased production of juvenile hormone I acid and the induced appearance of juvenile hormone esterase activity. Thus, in post-feeding last-stadium larvae of T. ni, juvenile hormone seems to be necessary for the proper formation of the pupa. Juvenile hormone is also involved in determining the time of pupation, and it appears to induce its own degradation.  相似文献   

18.
The haemolymph ecdysteroid titre and in vitro capacities of prothoracic glands and corpora allata to synthesize ecdysone and juvenile hormone, respectively, during the last-larval instar of diapause-destined (short-day) and non-diapause-destined (long-day) Manduca sexta were investigated. In general, the ecdysteroid titres for both populations of larvae were the same and exhibited the two peaks characteristic of the haemolymph titre during this developmental stage in Manduca. The only difference in the titre occurred between day 7 plus 12 h and day 7 plus 20 h, when the short-day larval titre did not decrease as quickly as the long-day titre. The in vitro synthesis of ecdysone by prothoracic glands of short- and long-day larvae during the pharate pupal phase of the instar were also essentially the same. Activity fluctuated at times which would support the idea that ecdysone synthesis by the glands is a major contributing factor to the changes in the haemolymph ecdysteroid titre. There was one subtle difference in prothoracic gland activity between the two populations, occurring on day 7 plus 2 h. By day 7 plus 10 h, however, rates of ecdysone synthesis by the short- and long-day glands were comparable. This elevated activity of the short-day glands occurred just prior to the period the haemolymph ecdysteroid titre remained elevated in these larvae. The capacities of corpora allata to synthesize juvenile hormone I and III in vitro were not markedly different in long- and short-day last-instar larvae. At the time of prothoracicotropic hormone release in the early pupa, activity of corpora allata from short- and long-day reared animals was low and also essentially the same. There were a few differences in the levels of synthesis at isolated times, but they were not consistent for both homologues. Overall, there are no compelling differences in the fluctuations of ecdysteroids and juvenile hormones between diapause-destined and non-diapause-destined Manduca larvae. Since these hormones do not appear to play any obviously significant role in the induction of pupal diapause in this insect, the photoperiodic induction of diapause in Manduca appears to be a predominantly brain-centred phenomenon not involving endocrine effectors.  相似文献   

19.
20.
《Insect Biochemistry》1987,17(7):1017-1021
A variety of water-miscible organic solvents caused profound activation of the homogeneous juvenile hormone esterase from Manduca sexta. Much lower activation was observed with other species. Methods for the handling of solutions of juvenile hormone are presented. The implications of solvent activation of juvenile hormone esterase activity are discussed, especially as they relate to analysis of the enzyme or titre determinations of juvenile hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号