首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the blood (hemolymph) of the silkworm Bombyx mori, the insect cytokine paralytic peptide (PP) is converted from an inactive precursor to an active form in response to the cell wall components of microorganisms and contributes to silkworm resistance to infection. To investigate the molecular mechanism underlying the up-regulation of host resistance induced by PP, we performed an oligonucleotide microarray analysis on RNA of blood cells (hemocytes) and fat body tissues of silkworm larvae injected with active PP. Expression levels of a large number of immune-related genes increased rapidly within 3 h after injecting active PP, including phagocytosis-related genes such as tetraspanin E, actin A1, and ced-6 in hemocytes, and antimicrobial peptide genes cecropin A and moricin in the fat body. Active PP promoted in vitro and in vivo phagocytosis of Staphyloccocus aureus by the hemocytes. Moreover, active PP induced in vivo phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) in the fat body. Pretreatment of silkworm larvae with ML3403, a pharmacologic p38 MAPK inhibitor, suppressed the PP-dependent induction of cecropin A and moricin genes in the fat body. Injection of active PP delayed the killing of silkworm larvae by S. aureus, whereas its effect was abolished by preinjection of the p38 MAPK inhibitor, suggesting that p38 MAPK activation is required for PP-dependent defensive responses. These findings suggest that PP acts on multiple tissues in silkworm larvae and acutely activates cellular and humoral immune responses, leading to host protection against infection.  相似文献   

2.
To identify the tissues which produce hemolymph lectin in larvae of Bombyx mori, ovary, testis, fat body, and hemocytes from 5th-instar larvae were cultured in vitro and the culture medium was partially purified and assayed for hemagglutinating activity. Among the tissues tested, hemocytes appeared to be a major source of the hemolymph lectins. Ovary produced lectins to about one-tenth of the amount observed for the hemocytes, whereas testis and fat body were not productive. To study the hormonal control of hemolymph lectin production by hemocytes, hemocytes from 4th-instar larvae were cultured in vitro. Hemagglutinating activity in the hemolymph of 4th-instar larvae was immunostainable with the monoclonal antibody raised against 350,000 dalton lectin found in the 5th-instar hemolymph, but their molecular sizes were larger than the 5th-instar hemolymph lectins. When 20-hydroxyecdysone was added into the medium, production of the lectin by the hemocytes was remarkably enhanced, depending upon the hormone concentration.  相似文献   

3.
The cellular immune response against parasitoid wasps in Drosophila involves the activation, mobilization, proliferation and differentiation of different blood cell types. Here, we have assessed the role of Edin (elevated during infection) in the immune response against the parasitoid wasp Leptopilina boulardi in Drosophila melanogaster larvae. The expression of edin was induced within hours after a wasp infection in larval fat bodies. Using tissue-specific RNAi, we show that Edin is an important determinant of the encapsulation response. Although edin expression in the fat body was required for the larvae to mount a normal encapsulation response, it was dispensable in hemocytes. Edin expression in the fat body was not required for lamellocyte differentiation, but it was needed for the increase in plasmatocyte numbers and for the release of sessile hemocytes into the hemolymph. We conclude that edin expression in the fat body affects the outcome of a wasp infection by regulating the increase of plasmatocyte numbers and the mobilization of sessile hemocytes in Drosophila larvae.  相似文献   

4.
5.
6.
The activity of protease inhibitors and proteases was studied in the hemolymph, gut, and fat body of 7th-instar larvae of Galleria mellonella infected by two microsporidia, Nosema algerae and Vairimorpha heterosporum. The increase in inhibitory activity in the hemolymph was substantial, and coincided with the development of the disease. The increase in inhibitory activity in the gut was almost doubled by N. algerae as compared with V. heterosporum, whereas the increase in inhibitory activity in fat body was found only in V. heterosporum-infected larvae. The course of proteolytic activity followed an inverse pattern to the elevated activity of inhibitors in the gut and the fat body, and rose only in moribund larvae at the end of the course of V. heterosporum infection. The differences in the pattern of proteases and inhibitors reflect the organ specificity of each of the microsporidia.  相似文献   

7.
8.
Protein metabolism in salivary glands, gut, haemolymph, and fat body during the last larval instar of the blowfly, Calliphora erythrocephala, has been investigated. In salivary glands, protein release, protein synthesis, amylase, and pepsin-like protease activity were maximal in 6 day larvae, this being at a time when the larvae had finished feeding. All these functions declined in glands from the rounded-off white puparial stage (R.O.) while acid phosphatase activity rose throughout the third instar to a maximum at the R.O. stage, Glands from 6 and 7 day larvae released protein which on disk gel electrophoresis separated into four minor bands and two major bands one of the latter possessing protease activity.In the gut, pepsin-like protease activity was maximal in 4 day larvae after which it fell rapidly thus following the feeding pattern of the larva in contrast to that in the salivary glands which did not.In vitro experiments showed that protease was released from 6 day glands through the basal membrane of the cells and not via the duct. A pepsin-like protease was also found in the haemolymph and fat body, the activity in the fat body rising rapidly during the latter part of the third instar, a rise which is attributed to the fat body sequestering protease from the haemolymph. Acid phosphatase activity in the fat body was maximal in 5 day larvae indicating that this enzyme was synthesized early in the third instar. It was shown that fat body sequestered 14C-labelled protein synthesized by and released from the salivary glands, most of the 14C activity being associated with a 600 g precipitable, acid-phosphatase rich fraction.It is proposed that in late third instar larvae the salivary glands function as glands of internal secretion, releasing protease into the haemolymph, which is then sequestered by the fat body (and perhaps other tissues) and is subsequently used in the lysis of the tissues at the time of metamorphosis.  相似文献   

9.
The pathology and virulence of a naturally occurring entomopoxvirus of the lesser cornstalk borer (Elasmopalpus lignosellus) were studied in the laboratory. Diseased larvae appeared red and white, as opposed to the normal blue-green and brown color of healthy larvae. Chronic disease protracted the larval life span up to 40 days beyond normal. Infection appeared to be restricted to the hemocytes and the fat body cells. The LC50 for 1st instars was 9 spheroids; for 3rd and 4th instars 93 spheroids; and for 5th and 6th instars, ca. 700 spheroids.  相似文献   

10.
Changes in the activities of lactate dehydrogenase isoenzymes in the gut and fat body of Galleria mellonella and Barathra brassicae larvac infected by the microsporidans Nosema plodiae and Pleistophora schubergi were studied by means of dise electrophoresis. In the normal last instar G. mellonella gut and fat body three isoenzymes, LDH-1, LDH-2-3, and LDH-4, and in B. brassicae two isoenzymes, LDH-1 and LDH-2-3, were present. In the fat body of both the animals infected by N. plodiae, the isoenzyme LDH-2-3 increased in activity substantially by the fifth day of infection. The gut LDH isoenzymes were not affected by the microsporidan. The same LDH-2-3 effect could be provoked by some enzymes toxic for G. mellonella larvae such as phospholipase-C and protease preparations.  相似文献   

11.
Hairu Yang 《Fly》2016,10(3):115-122
Several signaling pathways, including the JAK/STAT and Toll pathways, are known to activate blood cells (hemocytes) in Drosophila melanogaster larvae. They are believed to regulate the immune response against infections by parasitoid wasps, such as Leptopilina boulardi, but how these pathways control the hemocytes is not well understood. Here, we discuss the recent discovery that both muscles and fat body take an active part in this response. Parasitoid wasp infection induces Upd2 and Upd3 secretion from hemocytes, leading to JAK/STAT activation mainly in hemocytes and in skeletal muscles. JAK/STAT activation in muscles, but not in hemocytes, is required for an efficient encapsulation of wasp eggs. This suggests that Upd2 and Upd3 are important cytokines, coordinating different tissues for the cellular immune response in Drosophila. In the fat body, Toll signaling initiates a systemic response in which hemocytes are mobilized and activated hemocytes (lamellocytes) are generated. However, the contribution of Toll signaling to the defense against wasps is limited, probably because the wasps inject inhibitors that prevent the activation of the Toll pathway. In conclusion, parasite infection induces a systemic response in Drosophila larvae involving major organ systems and probably the physiology of the entire organism.  相似文献   

12.
A comparative study of the fat body of diapausing and non-diapausing larvae of the corn borer, Diatraea grandiosella, was undertaken using the electron microscope and the oxygen electrode. The electron microscopic results showed a shift from a synthetic to a storage function taking place in a 1 to 2 day period during the final instar of non-diapausing larvae, and in a 4 to 8 day period in that of pre-diapausing larvae. This transition was characterized by a decrease in the number of mitochondria and amount of rough endoplasmic reticulum, and by an increase in the number of proteinaceous granules and lysosomes. In vitro measurements using the oxygen electrode showed that the fat body is a normal aerobic respiratory tissue. The tissue reacted in a predictable manner to inhibitors of oxidative metabolism, including malonate, rotenone, oligomycin, and antimycin, and to the uncoupler, dinitrophenol. During the last instar the observed decrease in the respiratory rate of the fat body coincided with the observed ultrastructural changes in its cells. The fat body of 75 day old environmentally induced and juvenile hormone induced diapausing larvae consumed 90% and 78% less oxygen, respectively than that of 14 day old non-diapausing larvae.  相似文献   

13.
When lepidopteran larvae are infected by a large quantity of pathogens or parasitized by nonadaptive parasitoids, hemocytes in the hemocoel will encapsulate these foreign invaders. Cellular encapsulation requires hemocytes, particularly plasmatocytes, to change their states from nonadhesive, spherical cells into adhesive, spreading cells. However, it is unclear how the changes of plasmatocytes are regulated. Here we report that the integrin β1 subunit from hemocytes of Ostrinia furnacalis (Ofint β1) plays an important role in regulating the spreading of plasmatocytes. The full length cDNA sequence (4477 bp) of Ofint β1 was cloned from hemocytes. Phylogenetic analysis showed that Ofint β1 belonged to the integrin βPS family of Drosophila melanogaster with highest sequence identity (78.7%) to the β-integrin of Pseudoplusia includens. Structural analysis of the deduced amino acid sequence indicated that Ofint β1 had similar functional domains to known β-integrins in other lepidopteran insects. RT-PCR, Northern blotting, Western blotting and immunohistochemical analyses showed that OfINT β1 was expressed mainly in hemocytes, especially in plasmatocytes, and weakly in fat body, Malpighian tubes and epidermis. After hemocytes had spread onto slides, fewer antibodies to OfINT β1 bound to the surface of plasmatocytes. Furthermore, anti-OfINT β1 serum clearly inhibited the spreading of plasmatocytes. Together these results indicate that OfINT β1 may play an important role in regulating the spreading of plasmatocytes.  相似文献   

14.
Adenosine deaminase (ADA) is an enzyme present in all organisms that catalyzes the irreversible deamination of adenosine and deoxyadenosine to inosine and deoxyinosine. Both adenosine and deoxyadenosine are biologically active purines that can have a deep impact on cellular physiology; notably, ADA deficiency in humans causes severe combined immunodeficiency. We have established a Drosophila model to study the effects of altered adenosine levels in vivo by genetic elimination of adenosine deaminase-related growth factor-A (ADGF-A), which has ADA activity and is expressed in the gut and hematopoietic organ. Here we show that the hemocytes (blood cells) are the main regulator of adenosine in the Drosophila larva, as was speculated previously for mammals. The elevated level of adenosine in the hemolymph due to lack of ADGF-A leads to apparently inconsistent phenotypic effects: precocious metamorphic changes including differentiation of macrophage-like cells and fat body disintegration on one hand, and delay of development with block of pupariation on the other. The block of pupariation appears to involve signaling through the adenosine receptor (AdoR), but fat body disintegration, which is promoted by action of the hemocytes, seems to be independent of the AdoR. The existence of such an independent mechanism has also been suggested in mammals.  相似文献   

15.
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses segmented genome located on chromosome(s) of an endoparasitoid wasp, C. plutellae. An episomal viral segment (CpBV-S3) consists of 11,017 bp and encodes two putative open reading frames (ORFs). ORF301 shows amino acid sequence homologies (28-50%) with RNase T2s of various organisms. It also contains BEN domain in C-terminal region. ORF302 is a hypothetical gene, which is also found in other bracoviruses. Both genes were expressed in larvae of Plutella xylostella parasitized by C. plutellae. Their expressions were detected in all tested tissues including hemocyte, fat body, gut, and epidermis. To analyze effects of these genes on the parasitism, the segment of CpBV-S3 was injected to nonparasitized larvae of P. xylostella, in which the two genes were expressed at least for 4 days post-injection. The larvae injected with CpBV-S3 exhibited significant immunosuppression, such as reduction in total hemocyte population and impairment in nodule formation behavior of hemocytes in response to bacterial challenge. Each gene expression in the treated larvae was inhibited by co-injecting respective double strand RNA (dsRNA) specific to each ORF. Injection of dsRNA of ORF301 could rescue the immunosuppression of the viral segment-treated larvae, while dsRNA specific to ORF302 did not. These results suggest that a putative RNase fused with a BEN domain encoded in CpBV-S3 plays a parasitic role in inducing host immunosuppression in the parasitism.  相似文献   

16.
《Insect Biochemistry》1991,21(5):507-515
The arylphorins and LSP-2 like polypeptide were detected by immunoblotting analysis during development in the integument of C. capitata. In vitro translation of total RNA from fat body and integument during pupariation, clearly revealed that the polypeptides under consideration were exclusively synthesized in the fat body. Furthermore, in vitro experiments demonstrated that radiolabeled arylphorins and LSP-2 like polypeptide were taken up by the integument, in an undegraded state. Immunofluorescence experiments in cross sections of wandering stage larvae and white pupae revealed that the LSP-2 like polypeptide was mainly localized in the epidermal cells, and a very weak signal was also given by the cuticle. Furthermore, the presented results indicated that a small portion of the extracted proteins exist in high molecular weight aggregate(s).  相似文献   

17.
18.
Antimicrobial peptides accumulated in the hemolymph in response to infection are a key element of insect innate immunity. The involvement of the fat body and hemocytes in the antimicrobial peptide synthesis is widely acknowledged, although release of the peptides present in the hemolymph from the immune cells was not directly verified so far. Here, we studied the presence of antimicrobial peptides in the culture medium of fat body cells and hemocytes isolated from the blue blowfly Calliphora vicina using complex of liquid chromatography, mass spectrometry, and antimicrobial activity assays. Both fat body and hemocytes are shown to synthesize and release to culture medium defensin, cecropin, diptericins, and proline-rich peptides. The spectra of peptide antibiotics released by the fat body and hemocytes partially overlap. Thus, the results suggest that insect fat body and blood cells are capable of releasing mature antimicrobial peptides to the hemolymph. It is notable that the data obtained demonstrate dramatic difference in the functioning of insect antimicrobial peptides and their mammalian counterparts localized into blood cells’ phagosomes where they exert their antibacterial activity.  相似文献   

19.
Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2h, 100% in 48h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号