首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Honey bee (Apis mellifera L.) colonies bred for hygienic behavior were tested in a large field trial to determine if they were able to resist the parasitic mite Varroa destructor better than unselected colonies of"Starline" stock. Colonies bred for hygienic behavior are able to detect, uncap, and remove experimentally infested brood from the nest, although the extent to which the behavior actually reduces the overall mite-load in untreated, naturally infested colonies needed further verification. The results indicate that hygienic colonies with queens mated naturally to unselected drones had significantly fewer mites on adult bees and within worker brood cells than Starline colonies for up to 1 yr without treatment in a commercial, migratory beekeeping operation. Hygienic colonies actively defended themselves against the mites when mite levels were relatively low. At high mite infestations (>15% of worker brood and of adult bees), the majority of hygienic colonies required treatment to prevent collapse. Overall, the hygienic colonies had similar adult populations and brood areas, produced as much honey, and had less brood disease than the Starline colonies. Thus, honey bees bred for hygienic behavior performed as well if not better than other commercial lines of bees and maintained lower mite loads for up to one year without treatment.  相似文献   

2.
The objective of this study was to demonstrate genotypic variability and analyze the relationships between the infestation levels of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies, the rate of damage of fallen mites, and the intensity with which bees of different genotypes groom themselves to remove mites from their bodies. Sets of paired genotypes that are presumably susceptible and resistant to the varroa mite were compared at the colony level for number of mites falling on sticky papers and for proportion of damaged mites. They were also compared at the individual level for intensity of grooming and mite removal success. Bees from the "resistant" colonies had lower mite population rates (up to 15 fold) and higher percentages of damaged mites (up to 9 fold) than bees from the "susceptible" genotypes. At the individual level, bees from the "resistant" genotypes performed significantly more instances of intense grooming (up to 4 fold), and a significantly higher number of mites were dislodged from the bees' bodies by intense grooming than by light grooming (up to 7 fold) in all genotypes. The odds of mite removal were high and significant for all "resistant" genotypes when compared with the "susceptible" genotypes. The results of this study strongly suggest that grooming behavior and the intensity with which bees perform it, is an important component in the resistance of some honey bee genotypes to the growth of varroa mite populations. The implications of these results are discussed.  相似文献   

3.
The ectoparasitic mite Varroa destructor is an invasive species of Western honey bees (Apis mellifera) and the largest pathogenic threat to their health world-wide. Its successful invasion and expansion is related to its ability to exploit the worker brood for reproduction, which results in an exponential population growth rate in the new host. With invasion of the mite, wild honeybee populations have been nearly eradicated from Europe and North America, and the survival of managed honeybee populations relies on mite population control treatments. However, there are a few documented honeybee populations surviving extended periods without control treatments due to adapted host traits that directly impact Varroa mite fitness. The aim of this study was to investigate if Varroa mite reproductive success was affected by traits of adult bee behaviours or by traits of the worker brood, in three mite-resistant honey bee populations from Sweden, France and Norway. The mite’s reproductive success was measured and compared in broods that were either exposed to, or excluded from, adult bee access. Mite-resistant bee populations were also compared with a local mite-susceptible population, as a control group. Our results show that mite reproductive success rates and mite fecundity in the three mite-resistant populations were significantly different from the control population, with the French and Swedish populations having significantly lower reproductive rates than the Norwegian population. When comparing mite reproduction in exposed or excluded brood treatments, no differences were observed, regardless of population. This result clearly demonstrates that Varroa mite reproductive success can be suppressed by traits of the brood, independent of adult worker bees.  相似文献   

4.
Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to provide insight into the Africanized bee host-parasite relationship.  相似文献   

5.
Mites in the genus Tropilaelaps (Acari: Laelapidae) are ectoparasites of the brood of honey bees (Apis spp.). Different Tropilaelaps subspecies were originally described from Apis dorsata, but a host switch occurred to the Western honey bee, Apis mellifera, for which infestations can rapidly lead to colony death. Tropilaelaps is hence considered more dangerous to A. mellifera than the parasitic mite Varroa destructor. Honey bees are also infected by many different viruses, some of them associated with and vectored by V. destructor. In recent years, deformed wing virus (DWV) has become the most prevalent virus infection in honey bees associated with V. destructor. DWV is distributed world-wide, and found wherever the Varroa mite is found, although low levels of the virus can also be found in Varroa free colonies. The Varroa mite transmits viral particles when feeding on the haemolymph of pupae or adult bees. Both the Tropilaelaps mite and the Varroa mite feed on honey bee brood, but no observations of DWV in Tropilaelaps have so far been reported. In this study, quantitative real-time RT-PCR was used to show the presence of DWV in infested brood and Tropilaelaps mercedesae mites collected in China, and to demonstrate a close quantitative association between mite-infested pupae of A. mellifera and DWV infections. Phylogenetic analysis of the DWV sequences recovered from matching pupae and mites revealed considerable DWV sequence heterogeneity and polymorphism. These polymorphisms appeared to be associated with the individual brood cell, rather than with a particular host.  相似文献   

6.
Jay D. Evans 《Molecular ecology》2019,28(12):2955-2957
Rivaling pesticides and a dearth of flowers, the parasitic mite Varroa destructor presents a tremendous threat to western honey bees, Apis mellifera. A longstanding, but minor, pest for the Asian honey bee Apis cerana, these obligate bee parasites feast on developing and adult A. mellifera across several continents. Varroa reproduction is limited to a short window when developing bee pupae are concealed in wax cells. Mated females target developing bees just before pupation and then have about one day to initiate reproduction, eventually laying one male and up to several female offspring. Female mites often fail to reproduce at all, instead waiting in cells until their bee host finishes development and then hitching dangerous rides on a succession of adult bees for up to several weeks, before scouting for a new host pupa. In this issue of Molecular Ecology, Conlon et al. (2019) have explored mite reproductive success via a clever and thought‐provoking association study. In so doing, they have identified a protein whose actions could be integral to the dance between bees and their mite parasites.  相似文献   

7.
The prevalence of nine honey bee viruses in samples of dead adult bees from Apis mellifera colonies in the Netherlands and Germany infested with the parasitic mite Varroa jacobsoni was compared with virus incidence in uninfested colonies in Britain. In colonies with low mite populations the viruses present and their incidence during the year were similar to the results obtained from British colonies. However, in marked contrast with findings in Britain, acute paralysis virus (APV) was the primary cause of adult bee mortality in German honey bee colonies severely infested with V. jacobsoni. Dead brood from unsealed and sealed infested cells from German colonies with high mite populations also contained much APV. The evidence suggests that V. jacobsoni activates APV replication in adult bees by its feeding behaviour and transmits virus from adult honey bees to pupae. In addition, adult bees, in which APV is multiplying, transmit the virus to unsealed brood in the larval food.  相似文献   

8.
Reproduction ofVarroa jacobsoni Oudemans (Acari: Varroidae) and the number ofVarroa mites that were found dead on the bottom board of the hive, were studied in relation to the period the mites spent on adult honey bees,Apis mellifera L. (Hymenoptera: Apidae), prior to invasion into brood cells. The maximum period on adult bees was 23 days. To introduce mites, combs with emerging worker brood, heavily infested with mites, were placed into a colony and removed the next day. At the beginning of the first day following emergence from brood cells, 18% of the mites introduced into the colony was found on the bottom of the hive. Part of these mites may already have died inside the capped brood cells, and then fallen down after cleaning of cells by the bees. At the second and third day following emergence, respectively 4% and 2% of the mites on adult bees at the previous day was recovered on the bottom, whereas from the fourth day on only 0.6% of the mites on adult bees was recovered on the bottom per day. After invasion into brood cells, 8–12% of the mites did not produce any offspring. Of the mites that did reproduce, the total number of offspring was 4.0–4.4 per mite during one reproductive cycle, part of which may reach maturity resulting in 1.2–1.3 viable daughters, and 8–10% of the mites produced only male offspring. Reproduction was independent of the period the mites had spent on adult bees prior to invasion into brood cells.  相似文献   

9.
Currently, the Varroa destructor mite is the most serious parasite of honey bees (Apis mellifera) and has become a nearly cosmopolitan species. The mite not only causes damage by feeding on the haemolymph of honey bees, but it also transmits viruses, which have been implicated in colony collapse disorder. The major research goal has been to breed mite-tolerant honey bee lines in order to reduce the amount of pesticide used, because pesticides can promote the evolution of resistance in mites. In this review, we describe different behavioural traits and genes that may be part of the defence against the Varroa mite. Specifically, we review grooming behaviour, Varroa-sensitive hygiene and the suppression of mite reproduction. A large number of candidate genes have been identified by Quantitative Trait Loci studies, and through gene expression studies their function and effect have been elucidated. Results from the studies discussed can be used in apiary practice.  相似文献   

10.
Honey bee [Apis mellifera L. (Hymenoptera: Apidae)] genetic diversity may be the key to responding to novel health challenges faced by this important pollinator. In this study, we first compared colonies of four honey bee races, A. m. anatoliaca, A. mcarnica, A. m. caucasica, and A. msyriaca from Turkey, with respect to honey storage, bee population size, and defenses against varroa. The mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is an important pest of honey bee colonies. There are genetic correlates with two main defenses of bees against this parasite: hygienic behavior, or removing infested brood, and grooming, which involves shaking and swiping off mites and biting them. In the second part of this study, we examined the relationship of these two types of defenses, hygiene and grooming, and their correlation with infestation rates in 32 genetically diverse colonies in a ‘common garden’ apiary. Mite biting was found to be negatively correlated with mite infestation levels.  相似文献   

11.
The response of Asian honeybee (Apis cerana Fabr.) colonies toward the introduced worker brood of the European honeybee (Apis mellifera L.) infested with the parasitic mite Varroa jacobsoni Oudemans was investigated. When no mites were present, 40% of the healthy open brood and 3% of the healthy capped brood of the European honeybees were rejected by the Asian honeybee colonies. When the brood was infested, brood rejection was significantly higher for open (P < 0.05) and capped broods (P < 0.01). The brood removal activity decreased with time. The quantity of brood removed was also correlated with mite infestation level for open (r2 = 0.933) and sealed broods (r2 = 0.918). The feasibility of using heterospecific colonies to control Varroa mite is unclear and is discussed from behavioral and ecological points of view.  相似文献   

12.
The parasitic mite Varroa destructor is amongst the most serious problems of honey bees, Apis mellifera (Hymenoptera: Apidae) around the world including Pakistan. The present study estimates the mite density through powdered sugar roll method and evaluates the effectiveness of five miticides (fluvalinate, flumethrin, amitraz, formic acid, and oxalic acid) on A. mellifera colonies in German modified beehives. The results indicated that by treating the bees with one strip and two strips of fluvalinate per colony; the mite population remained below the economic threshold level (ETL) for 14 days and 25 days, respectively. Treatment of flumthrin @1 strip and @ 2 strips per colony resulted in mite population suppressed for 14 days and 39 days, respectively below ETL. Application of Amitraz @ 2 mL per 1.5 L water after every three days interval on sealed brood effectively controlled mites below ETL for 21 days. Formic acid @10 mL per colony applied through plastic applicator proved effective (below 3 mites per bee sample) for 24 days and oxalic acid applied through shop towel method resulted in mite population control for fifteen days. Use of powdered sugar roll method for easy sampling of Varroa mites and application of acaricides on precise economic threshold level during different seasons of the year for integrated management of Varroa mite is hereby advocated by current studies.  相似文献   

13.
Reproduction and population growth of Varroa destructor was studied in ten naturally infested, Africanized honeybee (AHB) (Apis mellifera) colonies in Yucatan, Mexico. Between February 1997 and January 1998 monthly records of the amount of pollen, honey, sealed worker and drone brood were recorded. In addition, mite infestation levels of adult bees and worker brood and the fecundity of the mites reproducing in worker cells were determined. The mean number of sealed worker brood cells (10,070 ± 1,790) remained fairly constant over the experimental period in each colony. However, the presence and amount of sealed drone brood was very variable. One colony had drone brood for 10 months and another for only 1 month. Both the mean infestation level of worker brood (18.1 ± 8.4%) and adult bees (3.5 ± 1.3%) remained fairly constant over the study period and did not increase rapidly as is normally observed in European honey bees. In fact, the estimated mean number of mites fell from 3,500 in February 1997 to 2,380 in January 1998. In May 2000 the mean mite population in the study colonies was still only 1,821 mites. The fertility level of mites in this study was much higher (83–96%) than in AHB in Brazil(25–57%), and similar to that found in EHB (76–94%). Mite fertility remained high throughout the entire study and was not influenced by the amount of pollen, honey or worker brood in the colonies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The potential for Metarhizium anisopliae (Metschinkoff) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in honey bee colonies was evaluated in field trials against the miticide, tau-fluvalinate (Apistan). Peak mortality of V. destructor occurred 3-4 d after the conidia were applied; however, the mites were still infected 42 d posttreatments. Two application methods were tested: dusts and strips coated with the fungal conidia, and both methods resulted in successful control of mite populations. The fungal treatments were as effective as the Apistan, at the end of the 42-d period of the experiment. The data suggested that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. M. anisopliae was harmless to the honey bees (adult bees, or brood) and colony development was not affected. Mite mortality was highly correlated with mycosis in dead mites collected from sticky traps, indicating that the fungus was infecting and killing the mites. Because workers and drones drift between hives, the adult bees were able to spread the fungus between honey bee colonies in the apiary, a situation that could be beneficial to beekeepers.  相似文献   

15.
狄斯瓦螨Varroa destructor Anderson & Trueman是意大利蜜蜂Apis mellifera Spinola的主要外寄生螨。雌成螨在幼虫巢房封盖前不久侵入幼虫巢房,并开始繁殖为害。从雌成螨在一个很短的时间内进入蜜蜂幼虫巢房,以及雄蜂幼虫巢房蜂螨的寄生率明显高于工蜂幼虫巢房的现象,表明蜜蜂幼虫体表一些信息素(semiochemicals)可能起着重要的引诱作用。作者对与大蜂螨相关的19种气味物质进行筛选,并对封盖前工蜂幼虫和雄蜂幼虫表皮挥发物进行气谱及气-质联谱测定。结果表明:雄蜂6龄幼虫对大蜂螨的引诱作用显著高于丁香水等10种气味物质。工蜂和雄蜂末龄幼虫体表挥发物的共有组份是9-二十三烯(C23H46),但它在雄蜂幼虫中所占的比例要明显高于工蜂幼虫。工蜂幼虫的特有主要组分是十八烷(C18H38)和9-甲基十九烷(C19H40);而雄蜂幼虫的特有主要组分是二十五烷(C25H52)和二十三烷(C23H48)。  相似文献   

16.
The ectoparasitic mite Varroa jacobsoni reproduces in the capped brood of the honey bees Apis cerana and Apis mellifera. Observations on the reproductive behavior of the mite have shown a well-structured spatial allocation of its activity using the bee or cell wall for different behaviors. The resulting advantages for the parasite of this subdivision of the concealed brood environment suggests an important role for chemostimuli in these substrates. Extracts of the European honey bee cocoons induce a strong arrestment response in the mite, as indicated by prolonged periods of walking on the extracts applied on a semipermeable membrane and by systematically returning to the stimulus after encountering the treatment borders. Two thin-layer chromatography fractions of the cocoon extract eliciting arrestment were found to contain saturated C17 to C22 primary aliphatic alcohols and C19 to C22 aldehydes. We analyzed extracts of the cocoon and different larvae, pupae, and adults of both worker and drone A. mellifera to determine the relative amounts of these chemostimuli in the different substrates employed by Varroa. Both aldehydes and alcohols were more abundant in the cocoon than in the cuticle of adult or developing bees. Mixtures of the aliphatic alcohols and aldehydes at the proportions found in the cocoons acted synergistically on the arrestment response, but this activity disappeared when mixed in equal amounts. When these oxygenated chemostimuli were mixed with C19 to C25 alkanes at the proportions found in the cocoon extract, we observed a significantly lower threshold for the chemostimulant mixture. These results indicate how Varroa may use mixtures of rarer products to differentiate between substrates and host stages during its developmental cycle within honey bee brood cells. Arch. Insect Biochem. Physiol. 37:129–145, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Nosema ceranae is a microsporidian parasite described from the Asian honey bee, Apis cerana. The parasite is cross-infective with the European honey bee, Apis mellifera. It is not known when or where N. ceranae first infected European bees, but N. ceranae has probably been infecting European bees for at least two decades. N. ceranae appears to be replacing Nosema apis, at least in some populations of European honey bees. This replacement is an enigma because the spores of the new parasite are less durable than those of N. apis. Virulence data at both the individual bee and at the colony level are conflicting possibly because the impact of this parasite differs in different environments. The recent advancements in N. ceranae genetics, with a draft assembly of the N. ceranae genome available, are discussed and the need for increased research on the impacts of this parasite on European honey bees is emphasized.  相似文献   

18.
The removal of Varroa destructor was assessed in Russian honey bee (RHB) colonies with known levels of Varroa Sensitive Hygienic (VSH) and brood removal activities. The expression of grooming behaviour using individual bees was also measured using three groups of RHB displaying different VSH levels: low hygiene (RHB-LH, < 35% VSH), medium hygiene (RHB-MH, 35–70%) and high hygiene (RHB-HH, > 70%). Italian colonies (5.43–71.62% VSH) served as control. Our results demonstrated, for the first time, significant relationships between two hygienic responses (VSH activity measured as percent change in infestation and the actual brood removal of Varroa-infested donor comb) and two measurements of mite fall (trapped old mites/trapped mites or O/T and trapped young mites/trapped mites or Y/T). However, these relationships were only observed in RHB colonies. In addition, the RHB colonies that displayed the highest levels of hygiene (RHB-HH) also groomed longer in response to the presence of a V. destructor mite based on individual bee assays. The positive regressions between the two hygienic measurements and O/T and their negative regressions with Y/T suggest that the removal of infested brood prevented successful mite reproduction, ultimately suppressing V. destructor infestations in the RHB colonies. In addition, it is demonstrated that RHB resistance to V. destructor rests on both an increased hygienic response and the removal of phoretic mites, released by hygienic behaviour, through grooming. Both resistance traits are reflected in the O/T and Y/T ratios found in trapped mites from RHB colonies. None of the measurements involving mite injuries were associated with any measurements of hygiene and colony infestations.  相似文献   

19.
Strips coated with conidia of Metarhizium anisopliae (Metschinkoff; Deuteromycetes: Hyphomycetes) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in colonies of honey bees, Apis mellifera (Hymenoptera: Apidae) were compared against the miticide, tau-fluvalinate (Apistan) in field trials in Texas and Florida (USA). Apistan and the fungal treatments resulted in successful control of mite populations in both locations. At the end of the 42-day period of the experiment in Texas, the number of mites per bee was reduced by 69-fold in bee hives treated with Apistan and 25-fold in hives treated with the fungus; however mite infestations increased by 1.3-fold in the control bee hives. Similarly, the number of mites in sealed brood was 13-fold and 3.6-fold higher in the control bee hives than in those treated with Apistan and with the fungus, respectively. Like the miticide Apistan, the fungal treatments provided a significant reduction of mite populations at the end of the experimental period. The data from the broodless colonies treated with the fungus indicated that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. In established colonies in Florida, honey bee colony development did not increase under either Apistan or fungal treatments at the end of the experimental period, suggesting that other factors (queen health, food source, food availability) play some major role in the growth of bee colonies. Overall, microbial control of Varroa mites with fungal pathogens could be a useful component of an integrated pest management program for the honey bee industry.  相似文献   

20.
Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号