首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Genes with overlapping expression and function may gradually diverge despite retaining some common functions. To test whether such genes show distinct patterns of molecular evolution within species, we examined sequence variation at the bric à brac (bab) locus of Drosophila melanogaster. This locus is composed of two anciently duplicated paralogs, bab1 and bab2, which are involved in patterning the adult abdomen, legs, and ovaries. We have sequenced the 148 kb genomic region spanning the bab1 and bab2 genes from 94 inbred lines of D. melanogaster sampled from a single location. Two non-coding regions, one in each paralog, appear to be under selection. The strongest evidence of directional selection is found in a region of bab2 that has no known functional role. The other region is located in the bab1 paralog and is known to contain a cis-regulatory element that controls sex-specific abdominal pigmentation. The coding region of bab1 appears to be under stronger functional constraint than the bab2 coding sequences. Thus, the two paralogs are evolving under different selective regimes in the same natural population, illuminating the different evolutionary trajectories of partially redundant duplicate genes.  相似文献   

6.
The functional diversification of the vertebrate globin gene superfamily provides an especially vivid illustration of the role of gene duplication and whole-genome duplication in promoting evolutionary innovation. For example, key globin proteins that evolved specialized functions in various aspects of oxidative metabolism and oxygen signaling pathways (hemoglobin [Hb], myoglobin [Mb], and cytoglobin [Cygb]) trace their origins to two whole-genome duplication events in the stem lineage of vertebrates. The retention of the proto-Hb and Mb genes in the ancestor of jawed vertebrates permitted a physiological division of labor between the oxygen-carrier function of Hb and the oxygen-storage function of Mb. In the Hb gene lineage, a subsequent tandem gene duplication gave rise to the proto α- and β-globin genes, which permitted the formation of multimeric Hbs composed of unlike subunits (α2β2). The evolution of this heteromeric quaternary structure was central to the emergence of Hb as a specialized oxygen-transport protein because it provided a mechanism for cooperative oxygen-binding and allosteric regulatory control. Subsequent rounds of duplication and divergence have produced diverse repertoires of α- and β-like globin genes that are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different stages of prenatal development and postnatal life. In the ancestor of jawless fishes, the proto Mb and Hb genes appear to have been secondarily lost, and the Cygb homolog evolved a specialized respiratory function in blood-oxygen transport. Phylogenetic and comparative genomic analyses of the vertebrate globin gene superfamily have revealed numerous instances in which paralogous globins have convergently evolved similar expression patterns and/or similar functional specializations in different organismal lineages.  相似文献   

7.
8.
Uncovering the cis-regulatory logic of developmental enhancers is critical to understanding the role of non-coding DNA in development. However, it is cumbersome to identify functional motifs within enhancers, and thus few vertebrate enhancers have their core functional motifs revealed. Here we report a combined experimental and computational approach for discovering regulatory motifs in developmental enhancers. Making use of the zebrafish gene expression database, we computationally identified conserved non-coding elements (CNEs) likely to have a desired tissue-specificity based on the expression of nearby genes. Through a high throughput and robust enhancer assay, we tested the activity of ∼ 100 such CNEs and efficiently uncovered developmental enhancers with desired spatial and temporal expression patterns in the zebrafish brain. Application of de novo motif prediction algorithms on a group of forebrain enhancers identified five top-ranked motifs, all of which were experimentally validated as critical for forebrain enhancer activity. These results demonstrate a systematic approach to discover important regulatory motifs in vertebrate developmental enhancers. Moreover, this dataset provides a useful resource for further dissection of vertebrate brain development and function.  相似文献   

9.
10.
11.
12.
13.
The four members of the albumin gene family encode the serum transport proteins albumin, α-fetoprotein, α-albumin, and vitamin D-binding protein. These genes are transcribed primarily in the liver with each having a different pattern of developmental expression. The tight linkage of these genes, particularly that of albumin, α-fetoprotein and α-albumin, and their liver-specific expression, has led to the suggestion that these genes share common regulatory elements. To directly examine whether the α-fetoprotein enhancer region could regulate the albumin gene family, expression of these genes was monitored in mice in which this region was deleted by homologous recombination. Our data indicate that this enhancer region is required for α-fetoprotein and albumin activation early in liver development and α-fetoprotein reactivation during liver regeneration, but that albumin, α-albumin, and vitamin D-binding protein expression later in hepatic development is not affected by the absence of these enhancers. We also demonstrate that RNA polymerase II loading on the α-fetoprotein and albumin promoters is reduced in the absence of this enhancer region, indicating a direct role for these enhancers in the assembly of the RNA Polymerase II complex during liver development.  相似文献   

14.
An enhancer trap (ET) mediated by a transposon is an effective method for functional gene research. Here, an ET system based on a PB transposon that carries a mini Krt4 promoter (the keratin4 minimal promoter from zebrafish) and the green fluorescent protein gene (GFP) has been used to produce zebrafish ET lines. One enhancer trap line with eye-specific expression GFP named EYE was used to identify the trapped enhancers and genes. Firstly, GFP showed a temporal and spatial expression pattern with whole-embryo expression at 6, 12, and 24 hpf stages and eye-specific expression from 2 to 7 dpf. Then, the genome insertion sites were detected by splinkerette PCR (spPCR). The Krt4-GFP was inserted into the fourth intron of the gene itgav (integrin, alpha V) in chromosome 9 of the zebrafish genome, with the GFP direction the same as that of the itgav gene. By the alignment of homologous gene sequences in different species, three predicted endogenous enhancers were obtained. The trapped endogenous gene itgav, whose overexpression is related to hepatocellular carcinoma, showed a similar expression pattern as GFP detected by in situ hybridization, which suggested that GFP and itgav were possibly regulated by the same enhancers. In short, the zebrafish enhancer trap lines generated by the PB transposon-mediated enhancer trap technology in this study were valuable resources as visual markers to study the regulators and genes. This work provides an efficient method to identify and isolate tissue-specific enhancer sequences.  相似文献   

15.
16.
17.
18.
The homeotic genes are essential to the patterning of the anterior-posterior axis along the developing Drosophila embryo. The expression timing and levels of these genes are crucial for the correct specification of segmental identity. The Abdominal-B (Abd-B) gene is first detected in the most posterior abdominal segments at high levels and gradually appears in progressively anterior abdominal segments in lower amounts. Regulatory mutations affecting this expression pattern produce homeotic transformations in the abdomen. The promoter targeting sequences (PTS) from Abd-B locus overcome the enhancer blocking effect of insulators and facilitate long-range enhancer-promoter interactions in transgenic flies (1, 2). In this study, we found that transgene activation by the IAB5 enhancer can be delayed by inserting a 9.5 kb 3′ Abd-B regulatory region containing the Frontabdominal-8 (Fab-8) insulator and the PTS element. We found that the delay is caused by the PTS and an insulator, and it is not specific to the enhancer or the promoter tested. Based on these findings, we hypothesize that the delay of remote enhancers is responsible for the Abd-B expression pattern, which is at least in part due to the regulatory activities of the PTS elements and chromatin boundaries.  相似文献   

19.
Gene duplication is an important evolutionary process thought to facilitate the evolution of phenotypic diversity. We investigated if gene duplication was associated with the evolution of phenotypic differences in a highly social insect, the honeybee Apis mellifera. We hypothesized that the genetic redundancy provided by gene duplication could promote the evolution of social and sexual phenotypes associated with advanced societies. We found a positive correlation between sociality and rate of gene duplications across the Apoidea, indicating that gene duplication may be associated with sociality. We also discovered that genes showing biased expression between A. mellifera alternative phenotypes tended to be found more frequently than expected among duplicated genes than singletons. Moreover, duplicated genes had higher levels of caste‐, sex‐, behavior‐, and tissue‐biased expression compared to singletons, as expected if gene duplication facilitated phenotypic differentiation. We also found that duplicated genes were maintained in the A. mellifera genome through the processes of conservation, neofunctionalization, and specialization, but not subfunctionalization. Overall, we conclude that gene duplication may have facilitated the evolution of social and sexual phenotypes, as well as tissue differentiation. Thus this study further supports the idea that gene duplication allows species to evolve an increased range of phenotypic diversity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号