首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A different expression pattern of polyphenol oxidases has been observed during storage in cultivars of potato (Solanum tuberosum L.) featuring different length of dormancy: a short-dormant cultivar showed, at the end of the dormancy, both the highest polyphenol oxidase activity and the largest number of enzyme isoforms. An isoform of polyphenol oxidase isolated at the end of the physiological dormancy from a short-dormant cultivar has been purified to homogeneity by means of column chromatography on phenyl Sepharose and on Superdex 200. The purification factor has been determined equal to 88, and the molecular mass of the purified isoform has been estimated to be 69 and 340 kDa by SDS polyacrylamide gel electrophoresis and gel filtration on Superdex 200, respectively, indicating this PPO isoform as a multimer. The corresponding zymogram features a diffused single band at the cathodic region of the gel and the pI of this polyphenol oxidase has been calculated equal to 6.5.  相似文献   

2.
The qualitative and quantitative compositions of leaf cuticular waxes from potato (Solanum tuberosum) varieties were studied. The principal components of the waxes were very long chain n-alkanes, 2-methylalkanes and 3-methylalkanes (3.1-4.6 microg cm(-2)), primary alcohols (0.3-0.7 microg cm(-2)), fatty acids (0.3-0.6 microg cm(-2)), and wax esters (0.1-0.4 microg cm(-2)). Methyl ketones, sterols, beta-amyrin, benzoic acid esters and fatty acid methyl, ethyl, isopropyl and phenylethyl esters were found for the first time in potato waxes. The qualitative composition of the waxes was quite similar but there were quantitative differences between the varieties studied. A new group of cuticular wax constituents consisting of free 2-alkanols with odd and even numbers of carbon atoms ranging from C25 to C30 was identified.  相似文献   

3.
A soluble and two different particulate forms of o-diphenol oxidase have been obtained from aged or fresh potato slices by differential and density gradient centrifugation. The particulate enzymes were shown to sediment with microsomes and peroxisomes, respectively. Over half the enzyme activity of aged slices was found to be particle bound, with approximately twice as much enzyme in the microsomes as in the peroxisomal fraction. Very similar distribution patterns have been obtained with fresh potatoes, which have an o-diphenol oxidase activity approximately one-third that of aged slices.  相似文献   

4.
A rhamnogalacturonan I polysaccharide was isolated from potato (Solanum tuberosum cv. Posmo) tuber cell walls and characterised by enzymatic digestion with an endo-beta-1 --> 4-galactanase and an endo-alpha-1 --> 5-arabinanase, individually or in combination. The reaction products were separated using size-exclusion chromatography and further analysed for monosaccharide composition and presence of epitopes using the LM5 anti-beta-1 --> 4-galactan and LM6 anti-alpha-1 --> 5-arabinan monoclonal antibodies. The analyses point to distinct structural features of potato tuber rhamnogalacturonan I, such as the abundance of beta-1 --> 4-galactan side chains that are poorly substituted with short arabinose-containing side chains, the presence of alpha-1 --> 5-arabinan side chains substituted with beta-1 --> 4-galactan oligomers (degree of polymerisation > 4), and the presence of alpha-1 --> 5-arabinans that resist enzymatic degradation. A synergy between the enzymes was observed towards the degradation of arabinans but not towards the degradation of galactans. The effect of the enzymes on isolated RG I is discussed in relation to documented effects of enzymes heterologously expressed in potato tubers. In addition, a novel and rapid method for the determination of the monosaccharide and uronic acid composition of cell wall polysaccharides using high-performance anion exchange chromatography with pulsed amperometric detection is described.  相似文献   

5.
PPi has previously been implicated specifically in the co-ordination of the sucrose–starch transition and in the broader context of its role as co-factor in heterotrophic plant metabolism. In order to assess the compartmentation of pyrophosphate (PPi) metabolism in the potato tuber we analysed the effect of expressing a bacterial pyrophosphatase in the amyloplast of wild type tubers or in the cytosol or amyloplast of invertase-expressing tubers. The second and third approaches were adopted since we have previously characterized the invertase expressing lines to both exhibit highly altered sucrose metabolism and to contain elevated levels of PPi (Farré et al. (2000a) Plant Physiol 123:681) and therefore this background rendered questions concerning the level of communication between the plastidic and cytosolic pyrophosphate pools relatively facile. In this study we observed that the increase in PPi in the invertase expressing lines was mainly confined to the cytosol. Accordingly, the expression of a bacterial pyrophosphatase in the plastid of either wild type or invertase-expressing tubers did not lead to a decrease in total PPi content. However, the expression of the heterologous pyrophosphatase in␣the cytosol of cytosolic invertase-expressing tubers led to strong metabolic changes. These results are discussed both with respect to our previous hypotheses and to current models of the compartmentation of potato tuber metabolism.  相似文献   

6.
7.
Ethylene, applied as ethephon, inhibited the elongation of etiolated, axillary potato shoots cultured in vitro and it stimulated radial growth along the whole length of these shoots. The same phenomena were observed when ACC, the precursor of ethylene, was added to the medium, whereas silver ions reversed these effects. However, tuber formation in vitro was suppressed by ethephon. This indicates a dual role of ethylene in the induction of tuber formation in potatoes: it had a positive effect by blocking the elongation of stolons and it suppressed tuber initiation.  相似文献   

8.
In order to elucidate the nature of the response of potato to impact injury at the biochemical level, changes in the location of the enzyme responsible for the discoloration, polyphenol oxidase, were determined using immunogold location with an antibody specific for potato tuber polyphenol oxidase. Tissue printing revealed that the enzyme was distributed throughout the tuber. Following impact injury, both tissue printing and quantitative electron microscopy indicated that there was no increase in the level of the enzyme although there was subcellular redistribution of polyphenol oxidase. This redistribution was first apparent at 12 h after impact, as determined by the use of confocal immunolocation, and coincided with loss of membrane integrity. These changes were examined in parallel with a number of stress-related parameters in both impact and wound responses. Wounding was accompanied by active gene expression and protein synthesis, leading to metabolic activity and tissue repair. In contrast, the bruising response was characterised by a limited active response and vital-staining methods indicated that after 16 h the tissue undergoes cell death. Received: 4 June 1998 / Accepted: 18 September 1998  相似文献   

9.
Among the multiple environmental signals and hormonal factors regulatingpotato plant morphogenesis and controlling tuber induction, jasmonates (JAs)andgibberellins (GAs) are important components of the signalling pathways in theseprocesses. In the present study, with Solanum tuberosum L.cv. Spunta, we followed the endogenous changes of JAs and GAs during thedevelopmental stages of soil-grown potato plants. Foliage at initial growthshowed the highest jasmonic acid (JA) concentration, while in roots the highestcontent was observed in the stage of tuber set. In stolons at the developmentalstage of tuber set an important increase of JA was found; however, in tubersthere was no change in this compound during tuber set and subsequent growth.Methyl jasmonate (Me-JA) in foliage did not show the same pattern as JA; Me-JAdecreased during the developmental stages in which it was monitored, meanwhileJA increased during those stages. The highest total amount of JAs expressed asJA+Me-JA was found at tuber set. A very important peak ofJA in roots was coincident with that observed in stolons at tuber set. Also, aprogressive increase of this compound in roots was shown during the transitionof stolons to tubers. Of the two GAs monitored, gibberellic acid(GA3) was the most abundant in all the organs. While GA1and GA3 were also found in stolons at the time of tuber set, noothermeasurements of GAs were obtained for stolons at previous stages of plantdevelopment. Our results indicate that high levels of JA and GAs are found indifferent tissues, especially during stolon growth and tuber set.  相似文献   

10.
Self-incompatibility in the Solanaceae is controlled by a single multiallelic genetic locus, the S locus. The stylar gene products of the S locus are abundant glycoproteins with ribonuclease activity, secreted in the transmitting tract tissue of the pistil. To investigate the structural and functional integrity and possible phenotypic effects of expression of the S-gene product in the male gametophyte, N. tabacum plants were transformed with a construct containing the genomic S2-RNase coding sequence from S. tuberosum under the control of the promoter of the pollen-specific LAT52 gene from tomato. The expression pattern of the S2 RNase in the male gametophyte at both the protein and RNA level was found to be identical to that already reported for expression of the -glucuronidase (GUS) gene directed by the LAT52 promoter in transgenic tomato and tobacco. The S2-RNase gene fusion led to a tissue-specific and developmentally regulated accumulation of the S2 polypeptide in pollen of transgenic tobacco plants. The transgenic protein product was of the same size and charge as the potato stylar product, had ribonuclease activity, and was glycosylated. The transgenic plants, however, did not show any morphological variations in their flower organs, and their fertility was not influenced by the accumulation of the S2-RNase protein in pollen.  相似文献   

11.
The peripheral benzodiazepine receptor (PBR), an internal protein of the mammalian mitochondrial membrane, is involved in several metabolic functions such as steroidogenesis, oxidative phosphorylation, and regulation of cell proliferation. Here we report the presence of PBRs in parenchymal and meristematic tissues of potato (Solanum tuberosum). PBRs are heterogeneously distributed in potato and are highly expressed in meristematic cells. In particular the receptor protein is mainly localised in the meristematic nuclear subcellular preparation. This 30-36 kDa protein, which corresponds to PBR, is increased, indeed, in meristematic compared to the parenchymal tissue. This suggests an involvement of this receptor in the regulation of cell plant growth. In addition, the demonstration that PBRs are also present in vegetables supports the hypothesis of a highly conserved receptor system during phylogenesis.  相似文献   

12.
The growth retardant chlormequat stimulated microtuber formation by a recalcitrant cultivar of potato (Solanum tuberosum), but reduced microtuber fresh weight in a cultivar that tuberised readily in its absence. Inhibition of microtuber growth by high concentrations of chlormequat was confirmed using a different in vitro system where all cultivars tuberised in the absence of growth retardants.Alternative growth retardants were tested. Daminozide also had a detrimental effect on microtuber fresh weight, but ancymidol and paclobutrazol did not inhibit microtuber growth at the concentrations required for stimulation of tuberisation by recalcitrant cultivars. In addition, 10-5 M ancymidol and paclobutrazol inhibited premature sprouting of microtubers in vitro.Abbreviations BA benzyladenine - DMSO dimethyl sulphoxide - FW fresh weight - PAR photosynthetically active radiation - SE standard error  相似文献   

13.
14.
Polyphenols represent a large family of plant secondary metabolites implicated in the prevention of various diseases such as cancers and cardiovascular diseases. The potato is a significant source of polyphenols in the human diet. In this study, we examined the expression of thirteen genes involved in the biosynthesis of polyphenols in potato tubers using real-time RT-PCR. A selection of five field grown native Andean cultivars, presenting contrasting polyphenol profiles, was used. Moreover, we investigated the expression of the genes after a drought exposure. We concluded that the diverse polyphenolic profiles are correlated to variations in gene expression profiles. The drought-induced variations of the gene expression was highly cultivar-specific. In the three anthocyanin-containing cultivars, gene expression was coordinated and reflected at the metabolite level supporting a hypothesis that regulation of gene expression plays an essential role in the potato polyphenol production. We proposed that the altered sucrose flux induced by the drought stress is partly responsible for the changes in gene expression. This study provides information on key polyphenol biosynthetic and regulatory genes, which could be useful in the development of potato varieties with enhanced health and nutritional benefits.  相似文献   

15.

Background and Aims

The three-dimensional distributions of mineral elements in potato tubers provide insight into their mechanisms of transport and deposition. Many of these minerals are essential to a healthy human diet, and characterizing their distribution within the potato tuber will guide the effective utilization of this staple foodstuff.

Methods

The variation in mineral composition within the tuber was determined in three dimensions, after determining the orientation of the harvested tuber in the soil. The freeze-dried tuber samples were analysed for minerals using inductively coupled plasma-mass spectrometry (ICP-MS). Minerals measured included those of nutritional significance to the plant and to human consumers, such as iron, zinc, copper, calcium, magnesium, manganese, phosphorus, potassium and sulphur.

Key Results

The concentrations of most minerals were higher in the skin than in the flesh of tubers. The potato skin contained about 17 % of total tuber zinc, 34 % of calcium and 55 % of iron. On a fresh weight basis, most minerals were higher in tuber flesh at the stem end than the bud end of the tuber. Potassium, however, displayed a gradient in the opposite direction. The concentrations of phosphorus, copper and calcium decreased from the periphery towards the centre of the tuber.

Conclusions

The distribution of minerals varies greatly within the potato tuber. Low concentrations of some minerals relative to those in leaves may be due to their low mobility in phloem, whereas high concentrations in the skin may reflect direct uptake from the soil across the periderm. In tuber flesh, different minerals show distinct patterns of distribution in the tuber, several being consistent with phloem unloading in the tuber and limited onward movement. These findings have implications both for understanding directed transport of minerals in plants to stem-derived storage organs and for the dietary implications of different food preparation methods for potato tubers.  相似文献   

16.
Starch synthesis in potato tubers grown at varied K nutrition 0.1 (K1), 0.25 (K2) and 1.0 mmol K L- nutrient solution (K3) was investigated with particular regard to the activity of selected enzymes (sucrose synthase, UDP-D-glucose pyrophosphatase, starch phosphorylase, amylases) in dependence on tuber K content. Allocation of K to the tubers was nearly the same in all treatments. The activity of enzymes related to tuber K content did not differ significantly. Starch and K content of tubers increased with progressing age, whereas a decrease was observed in growth rate, starch synthesis per day and K uptake per day. Positive correlations between the rates of K uptake, starch production and growth indicate that the dynamic phase of K supply to the tubers is of greater importance for starch synthesizing processes than the influence of total K content.  相似文献   

17.
In vitro culture was used to study morphogenetic aspects of the tuberization process under controlled conditions in potato (Solanum tuberosum L.) plants. This paper accurately defines four stages of tuber development and their correlation to external morphological characteristics and histological structures. Protein kinase activity, assayed in each stage using Historic HAS as substrate, was differentially expressed during the tuberization process. Phosphorylation was maximum in the first stages of tuber formation. The incorporation of [32PO4 –1] to endogenous peptides containing serine/threonine amino acidic residues followed the same pattern that the protein kinase activity did.Abbreviations EDTA Ethylenediaminetetraacetic acid - EGTA ethylenebis (oxyethylenenitrilo) tetraacetic acid - MOPS 4-morpholine-propanesulfonic acid  相似文献   

18.
Somatic hybrids between a potato virus Y (PVY) resistant Solanum etuberosum clone and a susceptible diploid potato clone derived from a cross between S. tuberosum Gp. Tuberosum haploid US-W 730 and S. berthaultii were evaluated for resistance to PVY. All but one of the tested somatic hybrids were significantly more resistant than cultivars Atlantic and Katahdin. However, none was as resistant as the S. etuberosum parent. One hexaploid somatic hybrid, possibly the product of a triple-cell fusion involving one S. etuberosum protoplast and two haploid x S. berthaultii protoplasts, was as susceptible to PVY infection as the cultivars. Tetraploid progeny of the somatic hybrids, obtained from crosses with Gp. Tuberosum cultivars, were neither as resistant as the maternal somatic hybrid parent, nor as susceptible as the paternal cultivar parent. It appears that the introgression of PVY resistance from (1EBN) S. etuberosum into (4EBN) S. tuberosum (EBN-endosperm balance number) will be successful through the use of somatic hybridization and subsequent crosses of the somatic hybrids back to S. tuberosum.  相似文献   

19.
Summary Leaves of the in vitro grown potato cultivars Bintje, Berolina, Desiree, and Russet Burbank were wounded and co-cultivated with Agrobacterium strains having chimeric bar and nptII genes on a disarmed T-DNA. Each leaf from these cultivars formed numerous calli on kanamycin-containing medium, and almost all calli regenerated shoots. For Russet Burbank, it was necessary to include AgNO3 in the medium to obtain efficient shoot regeneration. The transformed plants have one to a few copies of the T-DNA, show NPT-II and PAT activities, and are resistant to high doses of the commercial preparation of phospinotricin (glufosinate). Almost no somaclonal variation was detected in trans-genic plants.  相似文献   

20.
Potato tubers ( Solanum tubersoum cvs Bintje and King Edward). never exposed to light, lack chlorophyllous pigments. Continuous irradiation results in chlorophyll (Chl) formation and induces the ability for protochlorophyll (Pchl) formation when the tubers are brought back to darkness. Pigment synthesis takes place in both blue and red light, but blue light is more effective than red in starting the greening process. The pigment formation is strongest in the layers just below the periderm with a steep gradient inwards. Small amounts of Chl formed after irradiation. slowly fade away during extended darkness. However, the Chl formed after long time of irradiation is remarkably stable. Irradiated potatoes, placed in darkness, form Pchl with a fluorescence emission peak at 633 nm. A maximal level is reached after ca 7 days. Resolution of the Pchl spectrum suggests the presence of small amounts of a pigment with an emission maximum at around 642 nm. No sign of the Pchl with emission maximum at 657 nm, which dominates in etiolated leaves, is found. A faint Chl fluorescence indicates that some Pchl, probably the 642 nm form, is phototransformed into Chl in weak light. The Chl formation in the potato tuber is discussed in relation to that of roots and leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号