首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and solid-state structural characterization of five bile acid amides of 4-aminopyridine (4-AP) are reported. Systematic crystallization experiments revealed a number of structural modifications and/or solvate/hydrate systems for these conjugates. Particularly, cholic acid conjugate exhibited five distinct structure modifications, including one anhydrous form, mono- and dihydrates, as well as ethanol and 2-butanol solvates. The obtained crystal forms were examined extensively with various analytical methods, including solid-state NMR, Raman, and IR spectroscopies, powder and single crystal X-ray diffraction methods, thermogravimetry, and differential scanning calorimetry. After releasing their crystal solvent molecules, the resulted non-solvated structure forms showed 50-75°C higher melting points than corresponding bile acids, and thermal degradation occurred for all conjugates at about 300-330°C. Moreover, the single crystal X-ray structure of the ursodeoxycholic acid-4-aminopyridine conjugate is reported.  相似文献   

2.
Dissolution of sucrose crystals in the anhydrous sorbitol melt   总被引:1,自引:0,他引:1  
The dissolution of a sugar (sucrose as a model) with higher melting point was studied in a molten food polyol (sorbitol as a model) with lower melting point, both in anhydrous state. A DSC and optical examination revealed the dissolution of anhydrous sucrose crystals (mp 192 degrees C) in anhydrous sorbitol (mp 99 degrees C) liquid melt. The sucrose-sorbitol crystal mixtures at the proportions of 10, 30, 60, 100 and 150 g of sucrose per 100 g of sorbitol were heat scanned in a DSC to above melting endotherm of sorbitol but well below the onset temperature of melting of sucrose at three different temperatures 110, 130 and 150 degrees C. The heat scanning modes used were with or without isothermal holding. The dissolution of sucrose in the sorbitol liquid melt was manifested by an increase in the glass transition temperature of the melt and corresponding decrease in endothermic melting enthalpy of sucrose. At given experimental conditions, as high as 25 and 85% of sucrose dissolved in the sorbitol melt during 1 h of isothermal holding at 110 and 150 degrees C, respectively. Optical microscopic observation also clearly showed the reduction in the size of sucrose crystals in sorbitol melt during the isothermal holding at those temperatures.  相似文献   

3.
The spin-lattice relaxation time, T1, and the dipolar energy relaxation time, TD, were measured as a function of temperature. The materials studied were samples of anhydrous L-dipalmitoyl lecithin, DL-dipalmitoyl lecithin, L-dimyristoyl lecithin, DL-dimyristoyl lecithin and their monohydrates, and of anhydrous egg yolk lecithin. It is shown that TD is a much more sensitive parameter than T1 for the determination of the Chapman phase transition. Comparison between T1 and TD provides information about new types of slow molecular motions below and above the phase transition temperature. It is suggested that the relaxation mechanisms for T1 and TD in the gel phase are governed by segmental motion in the phospholipid molecule. A new metastable phase was detected in dimyristoyl lecithin monohydrates. This phase could only be detected from the dipolar energy relaxation times.  相似文献   

4.
Thermally induced transition between anhydrous and hydrated forms of highly crystalline beta-chitin was studied by differential thermal calorimetry (DSC) and X-ray diffraction. DSC of wet beta-chitin in a sealed pan gave two well-defined endothermic peaks at 85.2 and 104.7 degrees C on heating and one broad exothermic peak at between 60 and 0 degrees C on cooling. These peaks were highly reproducible and became more distinct after repeated heating-cooling cycles. The X-ray diffraction pattern of wet beta-chitin at elevated temperature showed corresponding changes in d-spacing between the sheets formed by stacking of chitin molecules. These phenomena clearly show that water is reversibly incorporated into the beta-chitin crystal and that the temperature change induces transitions between anhydrous, monohydrate, and dihydrate forms. The DSC behavior in heating-cooling cycles, including reversion between the two endothermic peaks, indicated that the transition between monohydrate and dihydrate was a fast and narrow-temperature process, whereas the one between the anhydrous and the monohydrate form was a slow and wide-temperature process.  相似文献   

5.
The melting curves of 11 vegetable oils have been characterised. Vegetable oil samples that were cooled at a constant rate (5 degrees C/min) from the melt showed between one and seven melting endotherms upon heating at four different heating rates (1, 5, 10 and 20 degrees C/min) in a differential scanning calorimeter (DSC). Triacylglycerol (TAG) profiles and iodine value analyses were used to complement the DSC data. Generally, the melting transition temperature shifted to higher values with increased rates of heating. The breadth of the melting endotherm and the area under the melting peak also increased with increasing heating rate. Although the number of endothermic peaks was dependent on heating rate, the melting curves of the oil samples were not straightforward in that there was no correlation between the number of endothermic peaks and heating rates. Multiple melting behaviour in DSC experiments with different heating rates could be explained by: (1) the melting of TAG populations with different melting points; and (2) TAG crystal reorganisation effects. On the basis of the corollary results obtained, vegetable oils and fats may be distinguished from their offset-temperature (Toff) values in the DSC melting curves. The results showed that Toff values of all oil samples were significantly (p < 0.01) different in the melting curves scanned at four different scanning rates. These calorimetric results indicate that DSC is a valuable technique for studying vegetable oils.  相似文献   

6.
Both dimethylsulfoxide (DMSO) and glycerol act cryoprotectants for biological systems and materials. Knowledge of molecular interactions of DMSO and glycerol with biological lipids is important for understanding of their cryoprotecitive mechanisms. In this study, the phase behavior and structures of hydrated monoolein were investigated in the presence of DMSO or glycerol, using differential scanning calorimetry (DSC) and simultaneous X-ray diffraction/DSC measurements. Based on the results obtained by this study, partial phase diagrams were constructed as a function of DMSO or glycerol concentrations and temperature. DMSO and glycerol hardly affect the enthalpy value for melting temperature of lamellar crystal phase of monoolein and the structure. On the other hand, DMSO and glycerol greatly affect the phase transformations associated with bicontinuous cubic phases of monoolein and the cubic phase structures. DMSO expands Im3m/Pn3m cubic phase co-existence region in the phase diagram and increases the lattice constant of the Pn3m monoolein cubic phase. Glycerol shows opposite effects. The present study suggests that different mechanisms act in the cryopreservation by DMSO and glycerol.  相似文献   

7.
Polymorphism phenomenon of melt-crystallized poly(butylene adipate) (PBA) has been studied by wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). It has been found that the isothermal crystallization leads to the formation of PBA polymorphic crystals, simply by changing the crystallization temperature. The PBA alpha crystal, beta crystal, and the mixture of two crystal forms grow at the crystallization temperatures above 32 degrees C, below 27 degrees C, and between these two temperatures, respectively. The relationship between PBA polymorphism and melting behaviors has been analyzed by the assignments of multiple melting peaks. Accordingly, the equilibrium melting temperatures Tm degrees of both alpha and beta crystals were determined by Hoffman-Weeks and Gibbs-Thomson equations for the purpose of understanding the structural metastability. The Tm degrees of the PBA alpha crystal was found to be higher than that of the beta crystal, indicating that the PBA alpha crystal form is a structurally stable phase and that the beta crystal form is a metastable phase. The analysis of growth kinetics of PBA polymorphic crystals indicates that the metastable PBA beta crystal is indeed the kinetically preferential result. Based on the thermal and kinetic results, the phenomenon of stability inversion with crystal size in melt-crystallized PBA was recognized, in terms of the growth mechanisms of PBA alpha and beta crystals and the transformation of beta to alpha crystals. The PBA beta --> alpha crystal transformation takes place at a sufficiently high annealing temperature, and the transformation has been evident to be a solid-solid-phase transition process accompanied by the thickening of lamellar crystals. The molecular motion of polymer chains in both crystalline and amorphous phases has been discussed to understand the thickening and phase transformation behaviors.  相似文献   

8.
The physical properties in water of a series of 1:1 acid-soap compounds formed from fatty acids and potassium soaps with saturated (10-18 carbons) and omega-9 monounsaturated (18 carbons) hydrocarbon chains have been studied by using differential scanning calorimetry (DSC), X-ray diffraction, and direct and polarized light microscopy. DSC showed three phase transitions corresponding to the melting of crystalline water, the melting of crystalline lipid hydrocarbon chains, and the decomposition of the 1:1 acid-soap compound into its parent fatty acid and soap. Low- and wide-angle X-ray diffraction patterns revealed spacings that corresponded (with increasing hydration) to acid-soap crystals, hexagonal type II liquid crystals, and lamellar liquid crystals. The lamellar phase swelled from bilayer repeat distances of 68 (at 45% H2O) to 303 A (at 90% H2O). Direct and polarized light micrographs demonstrated the formation of myelin figures as well as birefringent optical textures corresponding to hexagonal and lamellar mesophases. Assuming that 1:1 potassium hydrogen dioleate and water were two components, we constructed a temperature-composition phase diagram. Interpretation of the data using the Gibbs phase rule showed that, at greater than 30% water, hydrocarbon chain melting was accompanied by decomposition of the 1:1 acid-soap compound and the system changed from a two-component to a three-component system. Comparison of hydrated 1:1 fatty acid/soap systems with hydrated soap systems suggests that the reduced degree of charge repulsion between polar groups causes half-ionized fatty acids in excess water to form bilayers rather than micelles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The formation of amylose–lipid complexes in a gelatinized potato starch matrix was investigated using potato starch and glycerol monopalmitin. These complexes exist in two forms, with the amounts of each of the forms being dependent on the temperatures and durations of the pre-treatments.

Differential scanning calorimetry (DSC) was used to analyze transition temperatures and melting enthalpies, and thereby determine the amount of the complexes in the samples. X-ray diffraction analysis was used to investigate their crystallinity.

In measurements with DSC, form I started to melt at 88.5°C, and form II at 112.9°C. When complex form II was preheated at 100 or 110°C, its melting point rose to 116.3 and 119.7°C, respectively, because of an annealing effect. The same phenomenon occurred with complex form I: when preheated at 90°C, its melting point rose to 96.8°C. The crystal formation of form II appeared to be slower when treated at 110°C than at 100°C. Their maximum melting enthalpies were reached after about 24 h and 4 h of preheating, respectively. In X-ray diffraction analyses, form II showed a V-pattern, but form I did not. This indicates that form II is more crystalline than form I. It was possible to transform form I into form II when it was heat treated, because form I was then partially or totally melted.

As a comparison, the charged substance cetyltrimethylammonium bromide created complex form I with amylose in the starch matrix, but not form II.  相似文献   


10.
11.
For identification of how explosion increases the reactivity of chitin and chitosan, changes in the crystalline polymorphism of these polysaccharides were studied by X-ray diffraction measurements. The α-chitin form of chitin did not change after being exploded, but an X-ray diagram of chitosan showed a hydrated crystal of low crystallinity before the explosion, and increased crystallinity of the hydrated form plus a small amount of an anhydrous crystal after the explosion. The improvement of accessibility to both polysaccharides caused by the explosion seemed not to arise from changes in their crystalline polymorphism or crystallinity  相似文献   

12.
The aim of this work was to identify the transitions in the complex DSC profiles of potato starch at a low water content. Preparative DSC involves the thermal processing of samples in stainless steel DSC pans in a way that allows their subsequent structural characterization. The low temperature (LT), dual melting (M1–M2), and high temperature (HT) endotherms observed in DSC profiles of potato starch with 16% water were assigned to enthalpy relaxation, melting with preservation of granular identity, and transition of the melted granules into a molecular melt, respectively. Granular melting was accompanied by a strong reduction of swelling capacity. Significant molecular degradation was observed after the HT transition. There is evidence that HT does not represent a true thermodynamic transition, but is due to a volume change in the sample. In contrast to potato starch, maize starch with 16% water gave inhomogeneous samples after processing, presumably because of its low packing density.  相似文献   

13.
The binary phase diagram of the enantiomers of indobufen, 1 (Ibustrin), an antithrombotic drug, has been investigated by differential scanning calorimetry (DSC); 1 is a racemic compound (racemate) with melting point lower than that of the enantiomers. Its thermal behaviour (DSC) has been examined and is discussed in comparison with other physical methods (IR spectroscopy and X-ray powder diffraction). Absolute configuration has been assigned to the enantiomers by 1H-NMR correlations. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Crystal growth and solid-state structure of poly(lactide) Stereocopolymers   总被引:1,自引:0,他引:1  
Solid-state structure and melting behavior for random stereocopolymers of L-lactide with meso-lactide (P(L-LA-co-meso-LA)) with different meso-LA compositions of 0, 2, 4, and 10 mol % were investigated under various isothermal crystallization conditions. The crystalline morphology of P(L-LA-co-meso-LA) samples changed from the spherulitic aggregates to hexagonal lamellae stacking with a rise in crystallization temperature. Under each crystallization condition, P(L-LA-co-meso-LA) samples formed alpha-crystal modifications for homopolymer of L-LA. By using the atomic force microscopy and small-angle X-ray scattering, the stacking structure of lamellar crystals was examined for the isothermally crystallized P(L-LA-co-meso-LA) thin films. The lamellar thickness of P(L-LA-co-meso-LA) ranged from 6.2 to 15.5 nm, and the values increased with crystallization temperature. Melting profiles of crystalline regions were examined by the differential scanning calorimetry (DSC) for the P(L-LA-co-meso-LA) samples. Distinct two melting peaks were detected in the DSC thermograms of several samples. Investigations on the time-dependent changes in lamellar structure and melting temperature of the P(L-LA-co-meso-LA) samples under isothermal crystallization conditions provided the evidence that a small amount of D-lactyl units was trapped in the crystalline regions during early stage of crystallization process under the certain crystallization condition. In addition, it was found that the D-lactyl units trapped in crystalline regions were excluded from crystalline lamellae to form the thermally stable crystals without changes in crystal thickness during further isothermal storage at a crystallization temperature. The equilibrium melting temperature (T(m)0) of P(L-LA-co-meso-LA) samples was estimated by using modified Hoffman-Weeks methods, and the obtained values decreased from 215 to 184 degrees C as the meso-LA composition was increased from 0 to 10 mol %. Furthermore, the crystal growth kinetics of the P(L-LA-co-meso-LA) samples was analyzed by using the secondary nucleation theory. Transitions of crystalline regime both from regime III to regime II and from regime II to regime I were detected for each sample. The transition temperature from regime II to regime I of each of the P(L-LA-co-meso-LA) samples was very close to the temperature region revealed the morphological changes in the crystalline aggregates from the spherulitic aggregates to hexagonal lamellae stacking.  相似文献   

15.
Candida antarctica Lipase B (CALB), a metal-free enzyme, was successfully employed as catalyst for ring-opening copolymerization of omega-pentadecalactone (PDL) with p-dioxanone (DO) under mild reaction conditions (<80 degrees C, atmospheric pressure). Poly(PDL-co-DO) with high molecular weight (Mw > 30 000) and a wide range of comonomer contents was synthesized using various PDL/DO feed ratios. During the copolymerization reaction, large ring PDL was found to be more reactive than its smaller counterpart DO, resulting in higher PDL/DO unit ratios in polymer chains than the corresponding PDL/DO monomer ratios in the feed. The copolymers were typically isolated in 50-90 wt % yields as the monomer conversion was limited by the equilibrium between monomers and copolymer. 1H and 13C NMR analysis on poly(PDL-co-DO) formed by CALB showed that the copolymers contain nearly random sequences of PDL and DO units with a slight tendency toward alternating arrangements. Copolymerization with PDL was found to remarkably enhance PDO thermal stability. Differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) results demonstrate high crystallinity in all copolymers over the whole range of compositions. Depending on copolymer composition, the crystal lattice of either PDO or PPDL hosts units of the other comonomer, a behavior typical of an isodimorphic system. In poly(PDL-co-DO), both melting temperature and melting enthalpy display a minimum at 70 mol % DO, that is, at the pseudoeutectic composition. WAXS diffractograms show one crystal phase (that of either PPDL or PDO) on either side of the pseudoeutectic and coexistence of PPDL and PDO crystals at the pseudoeutectic.  相似文献   

16.
The thermotropic properties of N-(alpha-hydroxyacyl)-sphingosine (CER[AS]) in dry and hydrated state were studied by means of X-ray powder diffraction and FT-Raman spectroscopy. The polymorphic states of the CER[AS]/water mixture (lamellar crystalline, lamellar hexagonal gel, liquid crystalline) depend on the thermal pre-treatment of the sample. Only by heating the CER[AS]/water mixture above the melting chain transition can the system be hydrated. At room temperature, both dry and hydrated states form lamellar structures, which differ in their repeat distance and packing of hydrocarbon chains. Above the melting chain transition, hydrated CER[AS] forms a liquid crystalline hexagonal phase, whereas anhydrous CER[AS] forms an isotropic liquid phase. The various phases of hydrated CER[AS] are distinguished on the basis of the corresponding Raman spectra.  相似文献   

17.
Melting behaviour of D-sucrose, D-glucose and D-fructose   总被引:1,自引:0,他引:1  
The melting behaviour of d-sucrose, d-glucose and d-fructose was studied. The melting peaks were determined with DSC and the start of decomposition was studied with TG at different rates of heating. In addition, melting points were determined with a melting point apparatus. The samples were identified as d-sucrose, alpha-d-glucopyranose and beta-d-fructopyranose by powder diffraction measurements. There were differences in melting between the different samples of the same sugar and the rate of heating had a remarkable effect on the melting behaviour. For example, T(o), DeltaH(f) and T(i) (initial temperature of decomposition) at a 1 degrees Cmin(-1) rate of heating were 184.5 degrees C, 126.6Jg(-1) and 171.3 degrees C for d-sucrose, 146.5 degrees C, 185.4Jg(-1) and 152.0 degrees C for d-glucose and 112.7 degrees C, 154.1Jg(-1) and 113.9 degrees C for d-fructose. The same parameters at 10 degrees Cmin(-1) rate of heating were 188.9 degrees C, 134.4Jg(-1) and 189.2 degrees C for d-sucrose, 155.2 degrees C, 194.3Jg(-1) and 170.3 degrees C for d-glucose and 125.7 degrees C, 176.7Jg(-1) and 136.8 degrees C d-fructose. At slow rates of heating, there were substantial differences between the different samples of the same sugar. The melting point determination is a sensitive method for the characterization of crystal quality but it cannot be used alone for the identification of sugar samples in all cases. Therefore, the melting point method should be validated for different sugars.  相似文献   

18.
Protein-water dynamics in mixtures of water and a globular protein, bovine serum albumin (BSA), was studied over wide ranges of composition, in the form of solutions or hydrated solid pellets, by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption isotherm (ESI) measurements were performed at room temperature. The crystallization and melting events were studied by DSC and the amount of uncrystallized water was calculated by the enthalpy of melting during heating. The glass transition of the system was detected by DSC for water contents higher than the critical water content corresponding to the formation of the first sorption layer of water molecules directly bound to primary hydration sites, namely 0.073 (grams of water per grams of dry protein), estimated by ESI. A strong plasticization of the T(g) was observed by DSC for hydration levels lower than those necessary for crystallization of water during cooling, i.e. lower than about 0.3 (grams of water per grams of hydrated protein) followed by a stabilization of T(g) at about -80°C for higher water contents. The α relaxation associated with the glass transition was also observed in dielectric measurements. In TSDC a microphase separation could be detected resulting in double T(g) for some hydration levels. A dielectric relaxation of small polar groups of the protein plasticized by water, overlapped by relaxations of uncrystallized water molecules, and a separate relaxation of water in the crystallized water phase (bulk ice crystals) were also recorded.  相似文献   

19.
Wild-type (WT) plants of potato (Solanum tuberosum L.) and their transgenic forms carrying agrobacterial genes rolB or rolC under the control of B33 class I patatin promoter were cultured in vitro on MS medium with 2% sucrose in a controlled-climate chamber at 16-h illumination and 22°C. These plants were used as a source of single-node stem cuttings, which were cultured in darkness on the same medium supplemented with 8% sucrose. The tubers formed on them were used for determination of the structure of native starch using the methods of differential scanning microcalorimetry (DSC), X-ray scattering, and scanning electron microscopy. It was found that, in starch from the tubers of rolB-plants, the temperature of crystalline lamella melting was lower and their thickness was less than in WT potato. In tubers of rolC plants, starch differed from starch in WT plants by a higher melting temperature, considerably reduced melting enthalpy, and a greater thickness of crystalline lamellae. Deconvolution of DSC thermogram makes it possible to interpret the melting of starch from the tubers of rolC plants as the melting of two independent crystalline structures with melting temperatures of 65.0 and 69.8°C. Electron microscopic examination confirmed the earlier obtained data indicating that, in the tubers of rolC plants, starch granules are smaller and in the tubers of rolB plants larger than in WT plants. Possible ways of influence of rol transgenes on structural properties of starch in amyloplasts of potato tubers are discussed.  相似文献   

20.
The gelatinization of waxy rice, regular rice, and potato starch suspensions (66% w/w moisture) was investigated by real-time small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) during heating and by fast ramp differential scanning calorimetry (DSC). The high-angle tail of the SAXS patterns suggested the transition from surface to mass fractal structures in the DSC gelatinization range. Amylose plays a major role in determining the dimensions of the self-similar structures that develop during this process as the characteristic power-law scattering behavior extends to lower scattering angles for regular than for waxy starches. Crystallinity of A-type starches is lost in the temperature region roughly corresponding to the DSC gelatinization range. At the end of the gelatinization endotherm, the B-type potato starch showed residual crystallinity (WAXD), while SAXS-patterns exhibited features of remaining lamellar stacks. Results indicate that the melting of amylopectin crystallites during gelatinization is accompanied by the (exothermic) formation of amorphous networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号