首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A continuous affinity ultrafiltration process for trypsin purification   总被引:2,自引:0,他引:2  
A continuous process has been devised and tested for purification of a crude trypsin preparation from pig pancreas. The development was based on the principles of affinity chromatography and Ultrafiltration. Trypsin was selectively attracted by a water-soluble high molecular weight (>100,000) polymer, bearing a potent and specific trypsin inhibitor, m-aminobenzamidine. The trypsin-macroligand complex was then retained by using an appropriate Ultrafiltration membrane, while impurities could pass through. The bound trypsin was eluted by either arginine or benzamidine. The process also featured provision for recirculation of the eluant as well as the macroligand. It was demonstrated that this purification process could purify trypsin from the crude preparation with a yield of 77%, contaminated with only 3% of impurities. For the first time, a serious attempt has been made toward continuous purification of enzymes by the affinity Ultrafiltration technique. Besides a substantial increase in productivity, the affinity polymer could be easily reconditioned and expected to possess a long operative life. Such characteristics undoubtedly will play an important role in reducing the cost of trypsin purification.  相似文献   

2.
Trypsin and chymotrypsin were separated from porcine pancreas extract by continuous pH-parametric pumping. CHOM (chicken ovomucoid) was convalently bound to laboratory-prepared crab chitin with glutaraldehyde to form an affinity adsorbent of trypsin. The pH levels of top and bottom feeds were 8.0 and 2.5, respectively. Similar inhibitor, DKOM (duck ovomucoid), and pH levels 8.0 and 2.0 for top and bottom feeds, respectively, were used for separation and purification of chymotrypsin. epsilon-Amino caproyl-D-tryptophan methyl ester was coupled to chitosan to form an affinity adsorbent for stem bromelain. The pH levels were 8.7 and 3.0. Separation continued fairly well with high yield, e.g., 95% recovery of trypsin after continuous pumping of 10 cycles. Optimum operational conditions for concentration and purification of these enzymes were investigated. The results showed that the continuous pH-parametric pumping coupled with affinity chromatography is effective for concentration and purification of enzymes.  相似文献   

3.
Mathematical modeling of affinity ultrafiltration process   总被引:1,自引:0,他引:1  
An affinity ultrafiltration process has been developed by exploiting affinity binding in conjunction with cross-flow filtration. The process was proven to possess high resolution, high recovery yield, and ease of scale-up. The process could purify trypsin from a trypsin-chymotrypsin mixture batchwise or continuously. Essential for applying this concept was the synthesis of a water-soluble high-molecular-weight polymer bearing m-aminobenzamidine, a strong and specific trypsin in hibitor. A mathematical model was also developed to describe the dynamic behavior of the newly developed purification process. The model was able to predict the profiles of enzyme concentrations in the process with high accuracy.  相似文献   

4.
Two new double-headed protease inhibitors have been isolated from black-eyed peas. The isoinhibitors can be purified to homogeneity with greater than 90% recovery in a four-step procedure by means of sequential affinity chromatography on trypsin-Sepharose and chymotrypsin-Sepharose affinity columns. The isoinhibitors both have molecular weights near 8,000 and both have the same NH1-terminal residue serine. Black-eyed pea chymotrypsin and trypsin inhibitor (BEPCI) has an isoelectric point of 5.1 and inhibits trypsin and chymotrypsin simultaneously. Black-eyed pea trypsin inhibitor (BEPTI) has an isoelectric point of 6.5 and inhibits 2 molecules of trypsin simultaneously. BEPTI binds to chymotrypsin-Sepharose above pH 6 but does not inhibit chymotrypsin in the standard inhibitor assay with 10-3 M substrate. These new inhibitors are distinct from the Ventura inhibitor isolated from Serido black-eyed peas. An endogenous seed protease has been isolated from black-eyed peas by affinity chromatography on soybean inhibitor-carboxymethylcellulose affinity columns. A protease-BEPCI complex has been isolated by ion exchange chromatography. A dual physiological function of inhibition and protection of the seed protease is suggested as a plausible role of seed protease inhibitors.  相似文献   

5.
This study reports on the purification and characterization of a cationic enzyme with chymotryptic activity from camel pancreas. The enzyme was purified 52-fold in a 48% yield by a three-step chromatographic procedure consisting of anion-exchange, cation-exchange and affinity chromatographies. The purified enzyme was homogeneous on gel isoelectric focusing and on SDS gel electrophoresis. Its isoelectric point was estimated to be 7.3 and its molecular mass was found to be 23,600 Da. The enzyme was identified as a cationic chymotrypsin according to its physiochemical properties, substrate specificity and susceptibility to inhibition. It was active towards esters of aromatic amino acids but much less active towards a leucine ester. In all cases, the kcat values of the camel enzyme were less than the corresponding values of bovine chymotrypsin A. It also showed a lower level of kininase activity. Camel chymotrypsin was more susceptible than its bovine equivalent to inhibition by soybean trypsin inhibitor and aprotinin. It showed the same pH optimium as bovine chymotrypsin A for its esterolytic activity, but was more dependent on CaCl2 for long-term stability.  相似文献   

6.
A reactive water-soluble polymer was synthesized by copolymerizing N-isopropylacrylamide and glycidyl acrylate. The reactive polymer could react with the amino groups of enzymes/proteins or other ligands to form an affinity polymer. As a model, the reactive polymer was allowed to react with paraaminobenzamidine, a strong trypsin inhibitor. The affinity polymer could easily form an aqueous two-phase system with either dextran or pullulan, and the phase diagram was compared favorably to that of the well-known polyethylene glycol-dextran system. Once trypsin was attracted to the affinity polymer dominant phase, the enzyme could be dissociated from the polymer at low pH. Owing to the N-isopropylacrylamide units, the affinity polymer could be isolated from the solution by precipitation at a low level of ammonium sulfate. The enzyme recovery was always greater than 50%, and the affinity polymer could be reused in several cycles of affinity partitioning and recovery.  相似文献   

7.
A method for the continuous affinity separation of proteins is described in which the adsorbent, in the form of a polymer belt, is recycled through feedstock and eluent liquid flows. As the belt is nonporous, contact between the solute and the ligand is not diffusion-dependent. Consequently, rapid cycle rates are possible. Soybean trypsin inhibitor immobilized on nylon was used as an affinity ligand for the isolation of trypsin. During a 30-h continuous run, trypsin was isolated from a crude preparation of bovine pancreas with a recovery of 30% to 40%. Approximately 18 mg of trypsin was obtained from 500 mg of protein using a total of approximately 10 mug of ligand. Electrophoretic analysis of the eluent showed that chymotrypsin, which also binds to SBTI, was the only major contaminant of the product. It was demonstrated that the highest rates of protein purification were obtained using solid/liquid contact times well below that required to achieve saturation of the affinity adsorbent. Slower adsorbent recycle rates, which achieved higher protein binding per unit area of belt, resulted in lower protein purification per unit time. The rate of purification was also dependent on the concentration of target protein in the adsorption chamber at steady state. As high concentrations increased losses from the chamber outflow, this resulted in a compromise between throughput and recovery during the adsorption phase. Under the conditions investigated, recoveries of over 60% were obtained, and a maximum throughput of approximately 2.5 mg trypsin per hour was achieved. Preliminary studies have shown that this can be improved by compartmentalizing the adsorption chamber, which can reduce losses from the adsorption chamber to less than 5%. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 538-545, 1997.  相似文献   

8.
The preparation of quantities of poly(ADP-ribose) glycohydrolase sufficient for detailed structural and enzymatic characterizations has been difficult due to the very low tissue content of the enzyme and its lability in late stages of purification. To date, the only purification of this enzyme to apparent homogeneity has involved a procedure requiring 6 column chromatographic steps. Described here is the preparation of an affinity matrix which consists of ADP-ribose polymers bound to dihydroxyboronyl sepharose. An application is described for the purification of poly(ADP-ribose) glycohydrolase from calf thymus in which a single rapid affinity step was used to replace 3 column chromatographic steps yielding enzyme of greater than 90% purity with a 3 fold increase in yield. This matrix should also prove useful for other studies of ADP-ribose polymer metabolism and related clinical conditions.  相似文献   

9.
A colorimetric method for serine protease inhibition was modified using N-Acetyl-DL-Phenylalanine beta-Naphthylester (APNE) as the substrate and o-Dianisidine tetrazotized (oD) as the dye. The reaction generated a single peak absorbing at 530 nm for both trypsin and chymotrypsin. Standard curves with increasing enzyme concentrations showed strong linearity. A standard curve for the serine protease inhibitor, Bowman-Birk Inhibitor (BBI), has been made using this modified method. The IC50 for 3 U of trypsin was found to be 33 ng and the IC50 obtained for 3 mU of chymotrypsin was 53 ng. A recombinant BBI (rBBI) gene was constructed, cloned and expressed in the yeast Pichia pastoris. Evaluating samples of rBBI for protease inhibitory activity by the gel activity method failed to quantify the inhibitor amounts, due to high sensitivity for trypsin inhibition and low sensitivity for chymotrypsin inhibition. After development, the results could not be quantified, even to the extent that 1 microl of rBBI could not be detected with chymotrypsin inhibition. Therefore, a modified method for trypsin and chymotrypsin inhibition was used to evaluate the level of rBBI-expression for these same samples. The level of rBBI expression was calculated to be 50-56 ng/microl of media. These amounts fit into the range of values previously obtained by Western blot analysis. This modified method allows us to combine the sensitivity of the gel activity method with the quantification attributes of a Western blot. Thus, the modified method represents a significant improvement in speed, sensitivity and reproducibility over the gel activity method.  相似文献   

10.
The separation of chymotrypsin from a crude filtrate of bovine pancreas homogenate was carried out using precipitation with a commercially available negatively charged strong polyelectrolyte: polyvinyl sulfonate. The zymogen form of chymotrypsin was activated by addition of trypsin (0.01 mg/g homogenate), then, the enzyme was precipitated by polyelectrolyte addition at pH 2.5 in the pancreas homogenate. A stoichiometric ratio of 670 bound molecules of chymotrypsin per polyelectrolyte molecule was found in the non-soluble form of the enzyme–polyelectrolyte complex. The non-soluble complex was separated by simple centrifugation and re-dissolved by a pH change to 8.0. The recovery of chymotrypsin biological activity was 61% of the initial activity in the homogenate with 4.7-fold increase in its specific activity.  相似文献   

11.
An absorbent for the affinity chromatography of trypsin [EC 3.4.21.4] (AP Sepharose) was prepared. The ligand was a mixture of oligopeptides (mainly di- and tripeptides) containing L-arginine as carboxyl termini, and was obtained from a tryptic digest of protamine. Trypsin was absorbed at relatively low pH (7-4), but was not absorbed at the optimum pH of catalysis (8.2). This was clearly explained on the basis of the pH dependence of the interaction of trypsin with its products. Inactivated trypsin, trypsinogen, and chymotrypsin were not absorbed. The absorption of active trypsin was interferred with by either benzamidine or urea. From these observations, it is evident that AP Sepharose is an affinity adsorbent. AP Sepharose was useful for purification of commercial bovine trypsin. A preliminary application for the purification of Streptomyces griseus trypsin was also successful.  相似文献   

12.
Aprotinin is a protease inhibitor found in bovine organs and used as a valuable human therapeutic compound. In this work, a process for the recovery of aprotinin from insulin industrial process effluent via affinity adsorption on immobilized trypsin and chymotrypsin was developed. First, process conditions were set as a result of a study of the effects of pH and ionic strength on pure aprotinin adsorption and desorption utilizing an experimental design methodology. The best conditions obtained with immobilized trypsin as the ligand were adsorption at 0.018 M NaCl and pH 8.7 and desorption at 0.018 M NaCl and pH 2.1. For immobilized chymotrypsin, the best conditions were adsorption at 0.582 M NaCl and pH 8.0 and desorption at 0.582 M NaCl and pH 2.1. Recovery of the inhibitor from the effluent was carried out utilizing a two-step process: trypsin-agarose adsorption followed by chymotrypsin-agarose adsorption. Analysis of the chromatographic fractions by trypsin and chymotrypsin inhibition and capillary electrophoresis assays strongly suggested that the recovered inhibitor is aprotinin.  相似文献   

13.
A trypsin inhibitor isolated from a potato acetone powder has been purified by affinity chromatography. This protein inhibits trypsin mole per mole. To a lesser extent it combines also with chymotrypsin and elastase. For trypsin, K1 = 8 X 10(-7) M. The inhibitor has a single polypeptide chain of 207 amino acid residues. It contains no sugar or free sulfhydryl groups. Its extinction coefficient E2801% = 10.3 and its isoelectric point is 6.9. Its molecular weight is of the order of 21 000-22000, as determined by sedimentation equilbrium, by inhibition experiment or from its amino acid composition. These same techniques, taken together with the single band observed at different pH on polyacrylamide gel electrophoresis, indicate that the protein purified is monodisperse. However, the finding of two N-terminal amino acid residues, leucine and aspartic acid, and the different stoichometry observed during the interaction of the inhibitor, either with trypsin or with chymotrypsin and elastase, raises the possibility that our preparation is contaminated by a polyvalent inhibitor not detectable by physiochemical methods.  相似文献   

14.
A number on new cationic ligands have been designed and synthesized for the selective resolution an purification of the trypszin-like proteases. A series of ligands based on 4-[2′-methyl-4′-(2″,4″-dichloro-1″,3″,5″-triazin-6-ylamino) phenylazo]benzamidine were able to bind to trypsin and the trypsin-like proteases, thrombin and urokinase, but bound pancreatic kallikrein only weakly. Ligands possessing a second cationic group (either 4-aminophenyltrimethylammonium or 4-aminobenzamidine) substituted onto the triazine ring displayed higher affinities than the parent compound for trypsin in solution but bound the enzyme weakly or not at all after immobilization. In contrast, these bis-cationic ligands bound pancreatic kallikrein in solution ad following immobilization. The presence of the second cationic group was crucial, since its replacement by neutral or anionic groups led to loss of affinity for pancreatic kallikrein. One of the bis-cationic ligands was used to purify pancreatic kallikrein 9.5-fold from a crude pancreatic extract in 79% yield, to generate a product 99.9% free of contaminating trypsin activity.  相似文献   

15.
Trypsin purification by affinity binding to small unilamellar liposomes   总被引:3,自引:0,他引:3  
A novel protein purification process using affinity-ligand-modified liposomes and membrane ultrafiltration is described. The feasibility of the process was tested using trypsin as the model protein and p-aminobenzamidine (PAB) as the affinity ligand for trypsin. The affinity liposomes were prepared by covalently attaching PAB to the surface of small unilamellar liposomes via the hydrophilic spacer arm diglycolic acid. The liposomes were comprised of dimyristoyl phosphatidyl choline, cholesterol, and dimyristoyl phosphatidyl ethanolamine to which the diglycolic acid was attached. The equilibrium binding constant between trypsin and immobilized PAB was shown to be dependent on the PAB density of the liposome surface. Bound trypsin was eluted from the liposomes by the trypsin inhibitor benzamidine. Trypsin was purified from a trypsin/chymotrypsin mixture and from one of its naturally occurring sources, porcine pancreatic extract. A recovery yield from the crude mixture of 68% was obtained with a trypsin purity of 98%. The affinity-modified liposomes were stable in the complex mixture and retained their trypsin binding capacity after multiple adsorption/elution cycles over a 30-day period.  相似文献   

16.
Studies on proteolytic activity in commercial myoglobin preparations   总被引:2,自引:2,他引:0  
Commercial myoglobin preparations from horse skeletal muscle degraded casein. The maximum activity was at pH8-8.5. A muscle myofibril preparation was also attacked. The protease could be partly separated from the myoglobin by selective ultrafiltration through a membrane with an exclusion limit of mol.wt. 30000. A greater than 1000-fold purification of the proteolytic activity was achieved by affinity chromatography with soya-bean trypsin inhibitor bound to CM-cellulose. The enzyme preparation hydrolysed p-toluenesulphonyl-l-arginine methyl ester and N-benzyloxycarbonyl-l-tyrosine p-nitrophenyl ester. Its activity was inhibited strongly by soya-bean and ovomucoid trypsin inhibitors, serum and the soluble fraction of muscle homogenates. EDTA, p-chloromercuribenzoate and phenylmethylsulphonyl fluoride also caused some inhibition.  相似文献   

17.
The recently classified group III trypsins include members like Atlantic cod (Gadus morhua) trypsin Y as well as seven analogues from other cold-adapted fish species. The eight group III trypsins have been characterized from their cDNAs and deduced amino acid sequences but none of the enzymes have been isolated from their native sources. This study describes the successful expression and purification of a recombinant HP-thioredoxin-trypsin Y fusion protein in the His-Patch ThioFusion Escherichia coli expression system and its purification by chromatographic methods. The recombinant form of trypsin Y was previously expressed in Pichia pastoris making it the first biochemically characterized group III trypsin. It has dual substrate specificity towards trypsin and chymotrypsin substrates and demonstrates an increasing activity at temperatures between 2 and 21 degrees C with a complete inactivation at 30 degrees C. The aim of the study was to facilitate further studies of recombinant trypsin Y by finding an expression system yielding higher amounts of the enzyme than possible in our hands in the P. pastoris system. Also, commercial production of trypsin Y will require an efficient and inexpensive expression system like the His-Patch ThioFusion E. coli expression system described here as the enzyme is produced in very low amounts in the Atlantic cod.  相似文献   

18.
A putative rice trypsin/chymotrypsin inhibitor of the Bowman-Birk family, RBBI-8 of about 20 kDa, was expressed in Escherichia coli as a fusion protein bearing an N-terminal (His)6 purification tag. The expressed recombinant protein, rRBBI-8, is insoluble and accumulates as inclusion bodies. The insoluble protein was solubilized in 8 M urea under reducing environment and then refolded into its active conformation under optimized redox conditions. Strategies used to optimize yield and efficiency include selecting the redox system, increasing protein concentration during refolding by adding the denatured protein in a stepwise way, utilizing additives to prevent aggregation, and selecting buffer-exchanging conditions. A Ni-chelate affinity column was then employed to purify the renatured protein. rRBBI-8 shows strong inhibitory activity against trypsin and it can slightly inhibit chymotrypsin. In this study, a refolding and purification system was set up for this cysteine-rich recombinant protein expressed in a prokaryotic system.  相似文献   

19.
Evolution of proteinase inhibitor diversity in leguminous plants of tropical rainforests is under immense pressure from the regular upregulation of proteolytic machinery of their pests. The present study illustrates the isolation and bioinsecticidal potency of a serine proteinase inhibitor from the seeds of Caesalpinia bonduc (CbTI), inhabiting Great Nicobar Island, India. Following initial fractionation by ammonium sulfate precipitation, CbTI was purified to homogeneity by ion exchange, gel filtration and trypsin affinity chromatography. SDS-PAGE of gel filtrated CbTI showed a couple of proteins CbTI-1 ( approximately 16kDa) and CbTI-2 (20kDa) under non-reducing conditions, which subsequent to trypsin affinity chromatography yielded only CbTI-2. Both Native PAGE as well as iso-electric focusing showed 2 iso-inhibitors of CbTI-2 (pI values of 5.35 and 4.6). CbTI exhibited tolerance to extremes of temperatures (0-60 degrees C) and pH (1-12). A 1:1 stoichiometric ratio was noted during CbTI-2-trypsin complex formation, which was absent on binding with chymotrypsin. Further, SDS-PAGE analysis also showed that CbTI-1 has affinity only towards chymotrypsin, whereas both trypsin and chymotrypsin formed complexes with CbTI-2. Dixon plot analysis of CbTI-2 yielded inhibition constants (K(i)) of 2.75 x 10(-10)M and 0.95 x 10(-10)M against trypsin and chymotrypsin activity respectively. Preliminary investigations on the toxicological nature of CbTI revealed it to be a promising bioinsecticidal candidate.  相似文献   

20.
D-beta-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme which is localized on the inner face of the mitochondrial inner membrane. The apodehydrogenase, i.e. the purified enzyme devoid of lipid, has been purified from beef heart mitochondria and as such is inactive. It can be reactivated by insertion into phospholipid vesicles containing lecithin. Proteolytic digestion with different proteases has been carried out to obtain insight into the orientation of the enzyme in the membrane and to assess the extent of immersion of the protein into the phospholipid bilayer. Digestion of the apodehydrogenase with either trypsin, chymotrypsin, Staphylococcus aureus protease, thermolysin, carboxypeptidases A and Y, or Pronase (from Streptomyces griseus) leads to loss of activity, as assayed with phospholipid. Limited digestion with carboxypeptidase results in complete inactivation. Of the proteases tested, only Pronase and chymotrypsin cleave and inactivate the enzyme inserted into phospholipid vesicles (enzyme-phospholipid complex). For the enzyme-phospholipid complex, the loss of activity with Pronase digestion follows a single exponential decay to less than 10% of the initial activity. With chymotrypsin digestion, the staining intensity of the original approximately 31,500-dalton polypeptide decreases more rapidly than the loss of enzymic activity. The enzyme-phospholipid complex, after limited cleavage with chymotrypsin, retains enzymic activity and resonance energy transfer from protein to bound NADH and an approximately 26,000-dalton polypeptide is observed. Phospholipid alters the cleavage pattern with both chymotrypsin and Pronase, and the rate of inactivation of the enzyme-phospholipid complex is slowed in the presence of NAD(H). Moreover, the rate of inactivation of the apodehydrogenase with chymotrypsin is diminished approximately 3-fold in the presence of NAD+. Digestion of submitochondrial vesicles with either trypsin, chymotrypsin, or Pronase rapidly inactivates D-beta-hydroxybutyrate dehydrogenase; the addition of NAD+ or NADH, together with dithiothreitol and increased salt (to 50 mM), decreases the rate of inactivation, and with trypsin, virtually eliminates inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号