首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Naturally spawned eggs of the hydrozoan jellyfish Cladonema pacificum are arrested at G1-like pronuclear stage until fertilization. Fertilized eggs of Cladonema undergo a series of post-fertilization events, including loss of sperm-attracting ability, expression of adhesive materials on the egg surface, and initiation of cell cycle leading to DNA synthesis and cleavage. Here, we investigate whether these events are regulated by changes in intracellular Ca2+ concentration and mitogen-activated protein kinase (MAP kinase) activity in Cladonema eggs. We found that MAP kinase is maintained in the phosphorylated form in unfertilized eggs. Initiation of sperm-induced Ca2+ increase, which is the first sign of fertilization, was immediately followed by MAP kinase dephosphorylation within a few minutes of fertilization. The fertilized eggs typically stopped sperm attraction by an additional 5 min and became sticky around this time. They further underwent cytokinesis yielding 2-cell embryos at approximately 1 h post-fertilization, which was preceded by DNA synthesis evidenced by BrdU incorporation into the nuclei. Injection of inositol 1,4,5-trisphosphate (IP3) into unfertilized eggs, which produced a Ca2+ increase similar to that seen at fertilization, triggered MAP kinase dephosphorylation and the above post-fertilization events without insemination. Conversely, injection of BAPTA/Ca2+ into fertilized eggs at approximately 10 s after the initiation of Ca2+ increase immediately lowered the elevating Ca2+ level and inhibited the subsequent post-fertilization events. Treatment with U0126, an inhibitor of MAP kinase kinase (MEK), triggered the post-fertilization events in unfertilized eggs, where MAP kinase dephosphorylation but not Ca2+ increase was generated. Conversely, preinjection of the glutathione S-transferase (GST) fusion protein of MAP kinase kinase kinase (Mos), which maintained the phosphorylated state of MAP kinase, blocked the post-fertilization events in fertilized eggs without preventing a Ca2+ increase. These results strongly suggest that all of the three post-fertilization events, cessation of sperm attraction, expression of surface adhesion, and progression of cell cycle, lie downstream of MAP kinase dephosphorylation that is triggered by a Ca2+ increase.  相似文献   

2.
Results obtained in various species, from mammals to invertebrates, show that arrest in the cell cycle of mature oocytes is due to a high ERK activity. Apoptosis is stimulated in these oocytes if fertilization does not occur. Our previous data suggest that apoptosis of unfertilized sea urchin eggs is the consequence of an aberrant short attempt of development that occurs if ERK is inactivated. They contradict those obtained in starfish, another echinoderm, where inactivation of ERK delays apoptosis of aging mature oocytes that are nevertheless arrested at G1 of the cell cycle as in the sea urchin. This suggests that the cell death pathway that can be activated in unfertilized eggs is not the same in sea urchin and in starfish. In the present study, we find that protein synthesis is necessary for the survival of unfertilized sea urchin eggs, contrary to starfish. We also compare the effects induced by Emetine, an inhibitor of protein synthesis, with those triggered by Staurosporine, a non specific inhibitor of protein kinase that is widely used to induce apoptosis in many types of cells. Our results indicate that the unfertilized sea urchin egg contain different mechanisms capable of leading to apoptosis and that rely or not on changes in ERK activity, acidity of intracellular organelles or intracellular Ca and pH. We discuss the validity of some methods to investigate cell death such as measurements of caspase activation with the fluorescent caspase indicator FITC-VAD-fmk or acidification of intracellular organelles, methods that may lead to erroneous conclusions at least in the sea urchin model.  相似文献   

3.
Fertilization releases the brake on the cell cycle and the egg completes meiosis and enters into S phase of the mitotic cell cycle. The MAP kinase pathway has been implicated in this process, but the precise role of MAP kinase in meiosis and the first mitotic cell cycle remains unknown and may differ according to species. Unlike the eggs of most animals, sea urchin eggs have completed meiosis prior to fertilization and are arrested at the pronuclear stage. Using both phosphorylation-state-specific antibodies and a MAP kinase activity assay, we observe that MAP kinase is phosphorylated and active in unfertilized sea urchin eggs and then dephosphorylated and inactivated by 15 min postinsemination. Further, Ca(2+) was both sufficient and necessary for this MAP kinase inactivation. Treatment of eggs with the Ca(2+) ionophore A23187 caused MAP kinase inactivation and triggered DNA synthesis. When the rise in intracellular Ca(2+) was inhibited by injection of a chelator, BAPTA or EGTA, the activity of MAP kinase remained high. Finally, inhibition of the MAP kinase signaling pathway by the specific MEK inhibitor PD98059 triggered DNA synthesis in unfertilized eggs. Thus, whenever MAP kinase activity is retained, DNA synthesis is inhibited while inactivation of MAP kinase correlates with initiation of DNA synthesis.  相似文献   

4.
Fertilization of starfish eggs during meiosis results in rapid progression to embryogenesis as soon as meiosis II is completed. Unfertilized eggs complete meiosis and arrest in postmeiotic interphase for an, until now, indeterminate time. If they remain unfertilized, the mature postmeiotic eggs ultimately die. The aim of this study is to characterize the mechanism of death in postmeiotic unfertilized starfish eggs. We report that, in two species of starfish, in the absence of fertilization, postmeiotic interphase arrest persists for 16-20 h, after which time the cells synchronously and rapidly die. Dying eggs extrude membrane blebs, undergo cytoplasmic contraction and darkening, and fragment into vesicles in a manner reminiscent of apoptotic cells. The DNA of dying eggs is condensed, fragmented, and labeled by the TUNEL assay. Taken together, these data suggest that the default fate of postmeiotic starfish eggs, like their mammalian counterparts, is death by apoptosis. We further report that the onset and execution of apoptosis in this system is dependent on ongoing protein synthesis and is inhibited by a rise in intracellular Ca(2+), an essential component of the fertilization signaling pathway. We propose starfish eggs as a useful model to study developmentally regulated apoptosis.  相似文献   

5.
Calyculin A is known to inhibit the type-1 and type-2A phosphatases. We previously reported that calyculin A induces contractile ring formation in unfertilized sea urchin eggs, an increase in histone H(1) kinase activity, and chromosome condensation in the calyculin A-treated unfertilized eggs, and the changes induced by calyculin A are not affected by emetine, an inhibitor of protein synthesis. These observations suggest that the mechanism by which histone H(1) kinases are activated by calyculin A is different from that of maturation-promoting factor (MPF), which is activated by a molecular modification of existed cdc2 and newly synthesized cyclin B. We report here that no cyclin B was detected by immunoblotting of unfertilized calyculin A-treated eggs. In addition, no DNA synthesis was induced by calyculin A. As well, butyrolactone I (an inhibitor of cdc2 and cdk2 kinase) had no effect on the increase in histone H(1) kinase activity nor the chromosome condensation, both of which were induced by calyculin A. Thus, we conclude that calyculin A induces histone H(1) phosphorylation in an MPF-independent manner through inhibition of type-1 phosphatase, and that the chromosome condenses as a result of histone H(1) phosphorylation.  相似文献   

6.
The activity of the cell cycle control protein p34cdc2 is post-translationally regulated in a variety of cell types. Using anti-phosphotyrosine antibodies, we find that p34cdc2-directed tyrosine kinase activity increases at fertilization in sea urchin eggs, leading to a gradual accumulation of phosphotyrosine on p34 during the early part of the cell cycle. Loss of phosphotyrosine from p34 accompanies entry into mitosis and phosphotyrosine reaccumulates as the embryo enters the next cell cycle. A similar pattern is seen when eggs are parthenogenetically activated with ammonium chloride. Tyrosine phosphorylation and phosphorylation/dephosphorylation cycles are suppressed when embryos are treated with the tyrosine kinase inhibitor genistein. On the other hand, a cycle persists when protein synthesis is inhibited with emetine, indicating that it is independent of the synthesis of another class of cell cycle control proteins, the cyclins. Additional experiments with the phorbol ester, phorbol myristate acetate, demonstrate that activating protein synthesis alone in unfertilized eggs does not result in stimulation of p34cdc2 tyrosine kinase activity. Our results indicate that p34 tyrosine phosphorylation cycles are triggered by the fertilization Cai transient. The first cycle is independent of the fertilization pHi signal, confirming that, in sea urchin embryos, the cycle is not tightly coupled to the cycle of cyclin abundance that is a prominent feature of the eukaryotic cell division cycle.  相似文献   

7.
The cell cycle in oocytes generally arrests at a particular meiotic stage to await fertilization. This arrest occurs at metaphase of meiosis II (meta-II) in frog and mouse, and at G1 phase after completion of meiosis II in starfish. Despite this difference in the arrest phase, both arrests depend on the same Mos-MAPK (mitogen-activated protein kinase) pathway, indicating that the difference relies on particular downstream effectors. Immediately downstream of MAPK, Rsk (p90 ribosomal S6 kinase, p90(Rsk)) is required for the frog meta-II arrest. However, the mouse meta-II arrest challenges this requirement, and no downstream effector has been identified in the starfish G1 arrest. To investigate the downstream effector of MAPK in the starfish G1 arrest, we used a neutralizing antibody against Rsk and a constitutively active form of Rsk. Rsk was activated downstream of the Mos-MAPK pathway during meiosis. In G1 eggs, inhibition of Rsk activity released the arrest and initiated DNA replication without fertilization. Conversely, maintenance of Rsk activity prevented DNA replication following fertilization. In early embryos, injection of Mos activated the MAPK-Rsk pathway, resulting in G1 arrest. Moreover, inhibition of Rsk activity during meiosis I led to parthenogenetic activation without meiosis II. We conclude that immediately downstream of MAPK, Rsk is necessary and sufficient for the starfish G1 arrest. Although CSF (cytostatic factor) was originally defined for meta-II arrest in frog eggs, we propose to distinguish ;G1-CSF' for starfish from ;meta-II-CSF' for frog and mouse. The present study thus reveals a novel role of Rsk for G1-CSF.  相似文献   

8.
We have evaluated the regulation of a 43-kDa MAP kinase in sea urchin eggs. Both MAP kinase and MEK (MAP kinase kinase) are phosphorylated and active in unfertilized eggs while both are dephosphorylated and inactivated after fertilization, although with distinct kinetics. Reactivation of MEK or the 43-kDa MAP kinase prior to or during the first cell division was not detected. Confocal immunolocalization microscopy revealed that phosphorylated (active) MAP kinase is present primarily in the nucleus of the unfertilized egg, with some of the phosphorylated form in the cytoplasm as well. Incubation of unfertilized eggs in the MEK inhibitor U0126 (0.5 microM) resulted in the inactivation of MEK and MAP kinase within 30 min. Incubation in low concentrations of U0126 (sufficient to inactivate MEK and MAP kinase) after fertilization had no effect on progression through the embryonic cell cycle. Microinjection of active mammalian MAP kinase phosphatase (MKP-3) resulted in inactivation of MAP kinase in unfertilized eggs, as did addition of MKP-3 to lysates of unfertilized eggs. Incubation of unfertilized eggs in the Ca(2+) ionophore A23187 led to inactivation of MEK and MAP kinase with the same kinetics as observed with sperm-induced egg activation. This suggests that calcium may be deactivating MEK and/or activating a MAP kinase-directed phosphatase. A cell-free system was used to evaluate the activation of phosphatase separately from MEK inactivation. Unfertilized egg lysates were treated with U0126 to inactivate MEK and then Ca(2+) was added. This resulted in increased MAP kinase phosphatase activity. Therefore, MAP kinase inactivation at fertilization in sea urchin eggs likely is the result of a combination of MEK inactivation and phosphatase activation that are directly or indirectly responsive to Ca(2+).  相似文献   

9.
Deletion of the fission yeast mitotic B-type cyclin gene cdc13 causes cells to undergo successive rounds of DNA replication. We have used a strain which expresses cdc13 conditionally to investigate re-replication. Activity of Start genes cdc2 and cdc10 is necessary and p34cdc2 kinase is active in re-replicating cells. We tested to see whether other cyclins were required for re-replication using cdc13delta. Further deletion of cig1 and puc1 had no effect, but deletion of cig2/cyc17 caused a severe delay in re-replication. Deletion of cig1 and cig2/cyc17 together abolished re-replication completely and cells arrested in G1. This, and analysis of the temperature sensitive cdc13-117 mutant, suggests that cdc13 can effectively substitute for the G1 cyclin activity of cig2/cyc17. We have characterized p56cdc13 activity and find evidence that in the absence of G1 cyclins, S-phase is delayed until the mitotic p34cdc2-p56cdc13 kinase is sufficiently active. These data suggest that a single oscillation of p34cdc2 kinase activity provided by a single B-type cyclin can promote ordered progression into both DNA replication and mitosis, and that the level of cyclin-dependent kinase activity may act as a master regulator dictating whether cells undergo S-phase or mitosis.  相似文献   

10.
To investigate the role of mitogen-activated protein (MAP) kinase kinase (MEK)/MAP kinase cascade on p34cdc2 kinase activity and cyclin B1 levels during parthenogenetic activation of porcine oocytes, MEK activity, MAP kinase activity, p34cdc2 kinase activity, and cyclin B1 levels were assayed in mature porcine oocytes after treatment with different concentrations of Ca2+ ionophore. A high concentration of Ca2+ ionophore (50 microM) rapidly reduced MEK activity in oocytes for up to 8 h of culture. MEK activity in the 10-microM treatment group was significantly higher. The low concentration treatment transiently decreased p34cdc2 kinase activity but did not affect MAP kinase activity and ultimately induced reactivation of p34cdc2 kinase via the synthesis of cyclin B1. On the other hand, treatments of a high concentration of Ca2+ ionophore or a low concentration of Ca2+ ionophore plus MEK inhibitor, U0126, linearly decreased MAP kinase activity following the decrease of p34cdc2 kinase activity; most of these oocytes formed pronuclei. These results suggest that decreasing MAP kinase activity is essential to maintaining low p34cdc2 kinase activity resulting from the degradation of cyclin B via a Ca(2+)-dependent pathway; lower activities of both MAP kinase and p34cdc2 kinase induce normal meiotic completion and pronuclear formation of parthenogenetically activated porcine oocytes.  相似文献   

11.
G2-arrested oocytes contain cdc2 kinase as an inactive cyclin B-cdc2 complex. When a small amount of highly purified and active cdc2 kinase, prepared from starfish oocytes at first meiotic metaphase, is microinjected into Xenopus oocytes, it induces activation of the inactive endogenous complex and, as a consequence, drives the recipient oocytes into M phase. In contrast, the microinjected kinase undergoes rapid inactivation in starfish oocytes, which remain arrested at G2. Endogenous cdc2 kinase becomes activated in both nucleated and enucleated starfish oocytes injected with cytoplasm taken from maturing oocytes at the time of nuclear envelope breakdown, but only cytoplasm taken from nucleated oocytes becomes able thereafter to release second recipient oocytes from G2 arrest, and thus contains M phase-promoting factor (MPF) activity. Both nucleated and enucleated starfish oocytes produce MPF activity when type 2A phosphatase is blocked by okadaic acid. If type 2A phosphatase is only partially inhibited, neither nucleated nor enucleated oocytes produce MPF activity, although both do so if purified cdc2 kinase is subsequently injected as a primer to activate the endogenous kinase. The nucleus of starfish oocytes contains an inhibitor of type 2A phosphatase, but neither active nor inactive cdc2 kinase. Microinjection of the content of a nucleus into the cytoplasm of G2-arrested starfish oocytes activates endogenous cdc2 kinase, produces MPF activity, and drives the recipient oocytes into M phase. Together, these results show that the MPF amplification loop is controlled, both positively and negatively, by cdc2 kinase and type 2A phosphatase, respectively. Activation of the MPF amplification loop in starfish requires a nuclear component to inhibit type 2A phosphatase in cytoplasm.  相似文献   

12.
The cdc25 tyrosine phosphatase is known to activate cdc2 kinase in the G2/M transition by dephosphorylation of tyrosine 15. To determine how entry into M-phase in eukaryotic cells is controlled, we have investigated the regulation of the cdc25 protein in Xenopus eggs and oocytes. Two closely related Xenopus cdc25 genes have been cloned and sequenced and specific antibodies generated. The cdc25 phosphatase activity oscillates in both meiotic and mitotic cell cycles, being low in interphase and high in M-phase. Increased activity of cdc25 at M-phase is accompanied by increased phosphorylation that retards electrophoretic mobility in gels from 76 to 92 kDa. Treatment of cdc25 with either phosphatase 1 or phosphatase 2A removes phosphate from cdc25, reverses the mobility shift, and decreases its ability to activate cdc2 kinase. Furthermore, the addition of okadaic acid to egg extracts arrested in S-phase by aphidicolin causes phosphorylation and activation of the cdc25 protein before cyclin B/cdc2 kinase activation. These results demonstrate that the activity of the cdc25 phosphatase at the G2/M transition is directly regulated through changes in its phosphorylation state.  相似文献   

13.
We have examined the time course of protein tyrosine phosphorylation in the meiotic cell cycles of Xenopus laevis oocytes and the mitotic cell cycles of Xenopus eggs. We have identified two proteins that undergo marked changes in tyrosine phosphorylation during these processes: a 42-kDa protein related to mitogen-activated protein kinase or microtubule-associated protein-2 kinase (MAP kinase) and a 34-kDa protein identical or related to p34cdc2. p42 undergoes an abrupt increase in its tyrosine phosphorylation at the onset of meiosis 1 and remains tyrosine phosphorylated until 30 min after fertilization, at which point it is dephosphorylated. p42 also becomes tyrosine phosphorylated after microinjection of oocytes with partially purified M-phase-promoting factor, even in the presence of cycloheximide. These findings suggest that MAP kinase, previously implicated in the early responses of somatic cells to mitogens, is also activated at the onset of meiotic M phase and that MAP kinase can become tyrosine phosphorylated downstream from M-phase-promoting factor activation. We have also found that p34 goes through a cycle of tyrosine phosphorylation and dephosphorylation prior to meiosis 1 and mitosis 1 but is not detectable as a phosphotyrosyl protein during the 2nd through 12th mitotic cell cycles. It may be that the delay between assembly and activation of the cyclin-p34cdc2 complex that p34cdc2 tyrosine phosphorylation provides is not needed in cell cycles that lack G2 phases. Finally, an unidentified protein or group of proteins migrating at 100 to 116 kDa increase in tyrosine phosphorylation throughout maturation, are dephosphorylated or degraded within 10 min of fertilization, and appear to cycle between low-molecular-weight forms and high-molecular-weight forms during early embryogenesis.  相似文献   

14.
Periodically regulated cyclin-dependent kinase (Cdk) is required for DNA synthesis and mitosis. Hydroxyurea (HU) inhibits DNA synthesis by depleting dNTPs, the basic unit for DNA synthesis. HU treatment triggers the S-phase checkpoint, which arrests cells at S-phase, inhibits late origin firing and stabilizes replication forks. Using budding yeast as a model system, we found that Swe1, a negative regulator of Cdk, appears at S-phase and accumulates in HU treatment cells. Interestingly, this accumulation is not dependent on S-phase checkpoint. Deltahsl1, Deltahsl7, and cdc5-2 mutants, which have defects in Swe1 degradation, show HU sensitivity because of high Swe1 protein levels. We further demonstrated that their HU sensitivity is not a result of DNA damage accumulation or incomplete DNA synthesis; instead the sensitivity is due to their dramatically delayed recovery from HU-induced S-phase arrest. Strikingly, our in vivo data indicate that Swe1 inhibits the kinase activity of Clb2-Cdk1, but not that of Clb5-Cdk1. Therefore, S-phase accumulated Swe1 prevents Clb2-Cdk1-mediated mitotic activities, but has little effects on Clb5-Cdk1-associated S-phase progression.  相似文献   

15.
W G Dunphy  J W Newport 《Cell》1989,58(1):181-191
It has been demonstrated that the Xenopus homolog of the fission yeast cdc2 protein is a component of M phase promoting factor (MPF). We show that the Xenopus cdc2 protein is phosphorylated on tyrosine in vivo, and that this tyrosine phosphorylation varies markedly with the stage of the cell cycle. Tyrosine phosphorylation is high during interphase (in Xenopus oocytes and activated eggs) but absent during M phase (in unfertilized eggs). In vitro activation of pre-MPF from Xenopus oocytes results in tyrosine dephosphorylation of the cdc2 protein and switching-on of its kinase activity. The product of the fission yeast suc1 gene (p13), which inhibits the entry into mitosis in Xenopus extracts, completely blocks tyrosine dephosphorylation and kinase activation. However, p13 has no effect on the activated form of the cdc2 kinase. These findings suggest that p13 controls the activation of the cdc2 kinase, and that tyrosine dephosphorylation is an important step in this process.  相似文献   

16.
To clarify the mechanisms of fish fertilization, the effects of inhibitors of DNA polymerase-alpha and DNA topoisomerases on nuclear behavior before and after fertilization were examined in eggs of the medaka, Oryzias latipes. Eggs underwent the fertilization process from sperm penetration to karyogamy of pronuclei, even when inseminated and incubated in the continuous presence of aphidicolin (DNA polymerase alpha inhibitor), camptothecin (DNA topoisomerase I inhibitor), etoposide, or beta-lapachone (DNA topoisomerase II inhibitor). However, continuous treatment with aphidicolin or camptothecin during fertilization inhibited the formation of sister chromosomes that were normally separated into blastomeres at the time of the subsequent cleavage. Sister chromosome formation appeared concomitantly with an increase in histone H1 kinase activity at the end of DNA synthesis, 30 min post insemination. However, non-activated eggs that were inseminated in saline containing anesthetic MS222 and aphidicolin had high levels of histone H1 kinase and MAP kinase activities, and transformation of the penetrated sperm nucleus to metaphase chromosomes occurred even in the presence of aphidicolin or camptothecin. The male chromosomes were normally separated into two anaphase chromosome masses upon egg activation. These results suggest that DNA polymerase alpha or DNA topoisomerase I, but not DNA topoisomerase II, may be required for the process by which the mitotic interphase nucleus transforms to separable metaphase chromosomes while the activity of MAP kinase is low, unlike the situation in meiotic division, during which MAP kinase activity is high and DNA replication is not required.  相似文献   

17.
The pattern of ribonucleotide reductase, thymidine kinase, and thymidylate kinase activities during development of Paracentrotus lividus eggs and the effect of actinomycin on these enzymatic activities have been studied. Ribonucleotide reductase activity is detectable, though at a low level, in the unfertilized egg; the activity increases sharply soon after fertilization and reaches a peak at the morula stage. Thereafter it decreases and remains at a lower level than that of the unfertilized egg. Actinomycin, at a concentration sufficient to inhibit messenger RNA (mRNA) synthesis does not affect the level of enzymatic activity, indicating that preexisting maternal mRNA is used for the synthesis of this enzyme. Thymidine kinase is present at a low level in the egg; it increases sharply after the hatching blastula until the pluteus stage. Actinomycin does not affect the enzyme activity from fertilization until blastula but prevents the increase in enzyme activity that is observed between blastula and pluteus. Thymidylate kinase activity shows an increase after fertilization, followed by fluctuations throughout development with a considerable decrease at the blastula stage and at the end of gastrulation. Actinomycin has no effect on the activity of thymidylate kinase regardless of when the drug is added to the embryo suspension. Possible regulatory mechanisms of DNA synthesis in sea urchin embryos are discussed: The presence in the unfertilized egg of the most important enzymes controlling the cellular flow of DNA precursors and the availability of dTTP suggest that the block in DNA synthesis observed in the unfertilized egg is due to some particular mechanism that is switched on at fertilization.  相似文献   

18.
MPM-2 antigens, a discrete set of phosphoproteins that contain similar phosphoepitopes (the MPM-2 epitope), are associated with various mitotically important structures. The central mitotic regulator cdc2 kinase has been proposed to induce M-phase by phosphorylating many proteins which might include the MPM-2 antigens. To clarify the relationship of cdc2 kinase and the MPM-2 antigens, we developed an in vitro assay that enabled us to specifically detect the kinases that phosphorylate the MPM-2 epitope (ME kinases) in crude cell extracts. Two different ME kinase activities were identified in unfertilized Xenopus eggs, neither of which was cdc2 kinase, but both appeared to be activated by the introduction of cdc2 kinase into oocytes or oocyte extract. The two ME kinases differed in molecular size, substrate specificity, peptide components, and MPM-2 reactivity. The larger one, ME kinase-H, phosphorylated several MPM-2 antigens, while the smaller one, ME kinase-L, phosphorylated mainly one. We purified ME kinase-L to near homogeneity by sequential chromatography and showed that it has the characteristics of the 42-kD microtubule-associated protein (MAP) kinase. Our results support the previous finding that MAP kinase is activated during Xenopus oocyte maturation and suggest that MAP kinase may contribute to oocyte maturation induction by phosphorylating one subtype of MPM-2 epitope.  相似文献   

19.
20.
F Fang  J W Newport 《Cell》1991,66(4):731-742
Xenopus eggs contain two distinct cdc2 homologs of 34 and 32 kd. We show that the 32 kd cdc2 protein, like the 34 kd protein, is a kinase. However, unlike the 34 kd homolog, the 32 kd cdc2 kinase activity does not decrease dramatically at the end of mitosis. The 32 kd protein does not associate with mitotic cyclins B1 and B2 but does associate with cyclin A and a novel doublet of proteins of 54 kd that may regulate its activity. We also show that depletion of the 32 kd cdc2 homolog from a Xenopus extract blocks DNA replication, but does not inhibit entry into mitosis. By contrast, depletion of the 34 kd cdc2 homolog or absence of mitotic cyclins from an extract does not inhibit replication, but does block entry into mitosis. Our results indicate that in higher eukaryotes, DNA replication (G1-S) and mitosis (G2-M) may be controlled by distinctly different cdc2 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号