首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An annual cereal, barley, and a perennial grass ley, meadow fescue, were grown in field lysimeters in Sweden and fertilized with 12 and 20g Ca(NO3)2-N m−2 yr−1, respectively. Isotope-labeled (15N) fertilizer was added during year 1 of the study, whereafter similar amounts of unlabeled N were added during years 2 and 3. The grass ley lysimeters were ploughed after the growing season of year 3 and sown with barley during year 4. The barley harvest in year 1 removed 59% of the added fertilizer N, while the fertilizer N export by two meadow fescue harvests in year 1 was 65%. The labeled N export decreased rapidly after year 1, especially in the barley, but increased slightly after ploughing of the grass ley. The microbial biomass, measured with the chloroform fumigation method, incorporated a maximum of 1.4–1.7% of the labeled N during the first seven weeks after application. Later on, the incorporation stabilized at less than 1% in both cropping systems. The susceptibility of the residual labeled N to mineralization was evaluated three years after application by means of long-term laboratory incubations. The curves of cumulative mineralized N were described by a two-component first-order regression model that differentiated between an available and a more recalcitrant fraction of potentially mineralizable N. There was no difference in the amounts of potentially mineralizable N between the cropping systems. The labeled N comprised 5 and 2% of the amounts of potentially mineralizable N in the available and more recalcitrant fraction, respectively. The mineralization rate constants for the labeled N were almost twice as high as for the total potentially mineralizable N. The available fraction of the total potentially mineralizable N was 12%, while twice that proportion of the labeled N was available. It was concluded that the short-term ley did not differ from the annual crop with respect to the early disposition of the fertilizer N and the behaviour of the residual organic N.  相似文献   

2.
Decomposition of roots in a Chihuahuan Desert ecosystem   总被引:1,自引:0,他引:1  
Summary Mass losses of tethered buried roots of two woody shrubs and two herbaceous annuals buried in plots irrigated at 25 mm·month-1, 6 mm·week-1 and no irrigation were measured. At the end of 1 year, 10–15% of the mass of the herbaceous annual roots remained and 60% of the mass of woody shrub roots remained. There were no differences in mass loss attributable to added water. Rates of mass losses of roots in the Chihuahuan Desert were equal to or higher than those reported from mesic ecosystems. Roots of woody shrubs had relatively constant C:N ratios through the experiment. There was significant N immobilization in Baileya multiradiata roots. Percent mass loss of grass roots, Erioneuron pulchellum, and herbaceous annual roots, B. multiradiata, in plots with termites was 62% and in plots without termites was 15%. These data suggest that subterranean termites are responsible for most of the mass loss and mineralization of carbon and nitrogen in dead grass and herbaceous roots in the northern Chihuahuan Desert.  相似文献   

3.
Summary Changes in the pattern of distribution of the nitrogen of the soil and seedling grass plants have been investigated when the grass plants were grown in pots of sandy soil, from a pasture, at pH 5.7. Net mineralization of soil nitrogen was not observed during an experimental period of one month in the absence of added nitrogenous fertilizer (Table 2). Addition of labeled nitrogen (as ammonium sulphate) to the soil at the beginning of the experimental period resulted in a negative net mineralization during this period (Table 4b). When none of the fertilizer nitrogen remained in its original form in the soil it was found that approximately 12 per cent of the labeled nitrogen had been immobilized in soil organic compounds. Clipping of the grass at this date was followed by a decrease in the amount of labeled soil organic nitrogen, indicating that mineralization was not depressed by living plants. The application of unlabeled ammonium sulphate subsequent to the utilization of the labeled nitrogen did not decrease the amount of immobilized labeled nitrogen in the soil organic matter, as would be expected if the organic nitrogen compounds of the soil had been decomposed to ammonia. This was thought to be due to the fact that decomposition of organic nitrogen compounds in permanent grassland results in the production of peptides, amino acids etc. which are utilized by microorganisms without deamination taking place. In pots with ageing grass plants, labeled organic nitrogen compounds were found to be translocated from the grass shoots to the soil (Table 7). Net mineralization of soil organic nitrogen was positive in the contents of pots containing killed root systems (Table 3b). About 8 per cent of the labeled nitrogen added to the contents of such pots, in the form of ammonium sulphate, was found to be present in soil organic nitrogen compounds approximately 4 weeks after application, while a total of about twice this amount of soil organic nitrogen was mineralized during that period. From the results obtained in this investigation, it is concluded that the constant presence of living plants is responsible for the accumulation of nitrogen in organic compounds in permanent grassland. No evidence was obtained that the decomposition of such compounds in the soil is inhibited by living plants.  相似文献   

4.
Perennial ryegrass swards were grown in large containers on a soil and were exposed during two years to elevated (700 L L-1) or ambient atmospheric CO2 concentration at outdoor temperature and to a 3 °C increase in air temperature in elevated CO2. The nitrogen nutrition of the grass sward was studied at two sub-optimal (160 and 530 kg N ha-1 y-1) and one non-limiting (1000 kg N ha-1 y-1) N fertilizer supplies. At cutting date, elevated CO2 reduced by 25 to 33%, on average, the leaf N concentration per unit mass. Due to an increase in the leaf blade weight per unit area in elevated CO2, this decline did not translate for all cuts in a lower N concentration per unit leaf blade area. With the non-limiting N fertilizer supply, the leaf N concentration (% N) declined with the shoot dry-matter (DM) according to highly significant power models in ambient (% N=4.9 DM-0.38) and in elevated (%N=5.3 DM-0.52) CO2. The difference between both regressions was significant and indicated a lower critical leaf N concentration in elevated than in ambient CO2 for high, but not for low values of shoot biomass. With the sub-optimal N fertilizer supplies, the nitrogen nutrition index of the grass sward, calculated as the ratio of the actual to the critical leaf N concentration, was significantly lowered in elevated CO2. This indicated a lower inorganic N availability for the grass plants in elevated CO2, which was also apparent from the significant declines in the annual nitrogen yield of the grass sward and in the nitrate leaching during winter. For most cuts, the harvested fraction of the plant dry-matter decreased in elevated CO2 due, on average, to a 45–52% increase in the root phytomass. In the same way, a smaller share of the plant total nitrogen was harvested by cutting, due, on average, to a 25–41% increase in the N content of roots. The annual means of the DM and N harvest indices were highly correlated to the annual means of the nitrogen nutrition index. Changes in the harvest index and in the nitrogen nutrition index between ambient and elevated CO2 were also positively correlated. The possible implication of changes in the soil introgen cycle and of a limitation in the shoot growth potential of the grass in elevated. CO2 is discussed.Abbreviations 350 outdoor climate - 700 outdoor climate +350 L L-1[CO2] - 700+ outdoor climate +350 L L-1 (CO2) and +3 °C - N-- low N fertilizer supply - N+ high N fertilizer supply - N++ non-limiting N fertilizer supply - DM dry-matter  相似文献   

5.

Background and aims

Few studies have investigated the effect of nitrogen (N) fertilizer on ecosystem respiration (Re) under mixed legume and grass pastures sown at different seeding ratios,and data are almost entirely lacking for alpine meadow of the Tibetan Plateau. Our aim was to test the hypothesis that although a combination of legumes with grass and N fertilizer increases Re the combination decreases Re intensity (i.e. Re per unit of aboveground biomass) due to greater increases in aboveground biomass compared to increases in Re.

Methods

This hypothesis was tested using different seeding ratios of common vetch (Vicia sativa L.) and oat (Avena sativa L.) with and without N fertilizer on the Tibetan plateau in 2009 and 2010. Re was measured using a static closed opaque chamber. Re intensity was estimated as the ratio of seasonal average Re during the growing season to aboveground biomass.

Results

Compared with common vetch monoculture pasture, mixed legume-grass pastures only significantly decreased Re intensity (with a decrease of about 75 %–87 %) in the drought year 2009 due to greater increases in aboveground biomass compared to increases in Re. There were no significant differences in Re and Re intensity among different seeding ratios of oat and common vetch in either year. N fertilizer significantly decreased Re intensity for common vetch monoculture pasture by 24.5 % in 2009 and 69.5 % in 2010 although it did not significantly affect plant production and Re.

Conclusions

From the perspective of forage yield and Re, planting mixed legume-grass pastures without N fertilizer is a preferable way to balance the twin objectives of forage production and mitigation of atmospheric greenhouse gas emissions in alpine regions.  相似文献   

6.
A dairy farm system trial was conducted between September 2003 and August 2005 to evaluate the effect of integration of maize silage forage on nitrous oxide (N2O) emissions. Potentially, the integration of low-protein forage (e.g. feeding cows with maize silage) to reduce dietary-nitrogen (N) concentration can mitigate environmental N emissions and increase N use efficiency. The dairy farm systems consisted of a maize supplementation system with a stocking rate of 3.8 cows ha?1 of grazed pasture with maize silage brought in and a control system with a stocking rate of 3.0 cows ha?1 of grazed pasture. Direct and indirect N2O emissions from all components of the farm systems were either measured using a closed chamber technique or calculated using the New Zealand IPCC inventory methodology. Annual average N2O emissions were slightly lower on the maize supplementation pasture than on the control pasture. Annual total N2O emissions from the “whole” farm systems (including direct and indict emissions from the grazed pastures, maize growing land, N fertilizer use and associated land application of farm effluent) were 7.71 and 8.00 kg N2O–N ha?1 of dairy farm on the control and maize supplement farm systems, respectively. The corresponding annual milk production was 13,437 and 17,925 kg ha?1. Therefore, the N2O emission per kg of milk production from the maize supplementation was 22% lower than that from the control system. This was due to the much greater efficiency of N use from low-protein maize silage than from pasture. The results suggest that the integration of low-protein forage can be an effective management practice to mitigate adverse environmental effects of increasing stocking rates in the New Zealand dairy farm systems, in terms of N2O emissions per unit of milk production.  相似文献   

7.
A published meta-analysis of worldwide data showed soil carbon decreasing following land use change from pasture to conifer plantation. A paired site (a native pasture with Themeda triandra dominant, and an adjacent Pinus radiata plantation planted onto the pasture 16 years ago) was set up as a case study to assess the soil carbon reduction and the possible reason for the reduction under pine, including the change in fine root (diameter <2 mm) dynamics (production and mortality). Soil analysis confirmed that soil carbon and nitrogen stocks to 100 cm under the plantation were significantly less than under the pasture by 20 and 15%, respectively. A 36% greater mass of fine root was found in the soil under the pasture than under the plantation and the length of fine root was about nine times greater in the pasture. Much less fine root length was produced and roots died more slowly under the plantation than under the pasture based on observations of fine root dynamics in minirhizotrons. The annual inputs of fine root litter to the top 100 cm soil, estimated from soil coring and minirhizotron observations, were 6.3 Mg dry matter ha−1 year−1 (containing 2.7 Mg C and 38.9 kg N) under the plantation, and 9.7 Mg ha−1 year−1 (containing 3.6 Mg C and 81.4 kg N) under the pasture. The reduced amount of carbon, following afforestation of the pasture, in each depth-layer of the soil profile correlated with the lower length of dead fine roots in the layer under the plantation compared with the pasture. This correlation was consistent with the hypothesis that the soil carbon reduction after land use change from pasture to conifer plantation might be related to change of fine root dynamics, at least in part.  相似文献   

8.
Soil carbon distribution with depth, stable carbon isotope ratios in soil organic matter and their changes as a consequence of the presence of legume were studied in three 12-year-old tropical pastures (grass alone —Brachiaria decumbens (C4), legume alone —Pueraria phaseoloides (C3) and grass + legume) on an Oxisol in Colombia. The objective of this study was to determine the changes that occurred in the13C isotope composition of soil from a grass + legume pasture that was established by cultivation of a native savanna dominated by C4 vegetation. The13C natural abundance technique was used to estimate the amount of soil organic carbon originating from the legume. Up to 29% of the organic carbon in soil of the grass + legume pasture was estimated to be derived from legume residues in the top 0–2-cm soil depth, which decreased to 7% at 8–10 cm depth. Improvements in soil fertility resulting from the soil organic carbon originated from legume residues were measured as increased potential rates of nitrogen mineralization and increased yields of rice in a subsequent crop after the grass + legume pasture compared with the grass-only pasture. We conclude that the13C natural abundance technique may help to predict the improvements in soil quality in terms of fertility resulting from the presence of a forage legume (C3) in a predominantly C4 grass pasture.  相似文献   

9.
Subterranean clover (Trifolium subterraneum L. cv Woogenellup) and soft chess grass (Bromus mollis L. cv Blando) were grown in monocultures with 15NH4Cl added to the soil to study nitrogen movement during regrowth following shoot removal. Four clipping treatments were imposed. Essentially all available 15N was assimilated from the soil prior to the first shoot harvest. Measurements of total reduced nitrogen and 15N contained within that nitrogen fraction in roots, crowns, and shoots at each harvest showed large, significant (P ≤ 0.001) declines in excess 15N of crowns and roots in both species between the first and fourth harvests. There was no significant decline in total reduced nitrogen in the same organs over that period. Similar responses were evident in plants defoliated three times. The simplest interpretation of these data is that reduced nitrogen compounds turn over in plant roots and crowns during shoot regrowth. Calculations for grass and clover plants clipped four times during the growing season indicated that 100 to 143% of the nitrogen present in crowns and roots turned over between the first and fourth shoot harvest in both species, assuming nitrogen in those organs was replaced with nitrogen containing the lowest available concentration of 15N. If other potential sources of nitrogen were used for the calculations, it was necessary to postulate that larger amounts of total nitrogen flowed through the crown and root to produce the measured dilution of 15N compounds. These data provide the first quantitative estimates of the amount of internal nitrogen used by plants, in addition to soil nitrogen or N2, to regenerate shoots after defoliation.  相似文献   

10.
In maize-soybean intercropping systems, the transfer of N from soybean to maize gives the intercropping system the advantage of improved N utilization and higher yields. Mycorrhiza acts as an important pathway for N transfer, providing a constant supply of N to sustain the growth and development of maize in its early stages. However, it is not clear how arbuscular mycorrhizal fungi (AMF) drive the transfer of N from soybean to maize in the intercropping system. Therefore, we quantified the amount of N transferred from soybean to maize under low and high N levels in the intercropping system, and the abundance and diversity of AMF involved in N transfer (15N-AMF) under different conditions by 15N leaf marker and DNA-SIP technology. We found that the interaction between roots and reducing the application of N fertilizer increased the amount of N transfer from soybean to maize. Compared with plastic plate separation (PS), no separation (NS) and mesh separation (MS) significantly increased the N fixation rate (from 14.33% to 39.09%), and the amount of N transfer under NS was 1.95–3.48 times that under MS. N transfer from soybean to maize ranged from 9.7 to 43.42 mg per pot in the no N treatment, while the addition of N fertilizer reduced N transfer by 14.12–66.28%. This is due to root interaction and reduced N fertilization increased the abundance and diversity of the 15N-AMF community, thereby promoting AMF colonization of maize and soybean roots. AMF colonization in soybean and maize roots under NS treatment was 6.47–17.24% higher than under MS treatment in all three levels of N addition. The increase of mycorrhiza in root system increased the N transfer from soybean to maize significantly. These results suggest that reduced N fertilizer in maize-soybean intercropping systems can increase N transfer by the mycorrhizal pathway, meeting maize N requirements and reducing chemical N fertilizer, which is important for sustainable agricultural development.  相似文献   

11.
NH4 +-fixation by inorganic and organic soil components and crop utilization of fertilier nitrogen was studied in a number of Carbbean soils using15N fertilizers. At moderate rates of nitrogen application, NH4 +-fixation by clays during several-week laboratory incubations was rapid and highly vaiable, ranging from less than 10% to over 70% of the NH4 + added. The 2: 1 lattice types were the most reactive, and the process were almost complete by one week after fertilization. Fixation increased with rate of NH4 +-N application and was higher at elevated temperatures in soils that were allowed to air-dry during incubation. NH4 +-N fixation was more active in the fulvic fractions of the soil organic matter than in the humuc fractions (25–69%vs0–3% of the added NH4 + was fixed in each, respectively). There was little incorporation of fertilizer-N by the N-containing fractions of soil organic matter. Plant uptake of added NH4 +-N in greenhouse pot experiments showed that a greater percentalte of fertilizer-N was taken up by Sudan grass (Sourghum sudanese) at a fertilizer rate of 40 kg NH4 +-N ha?1 than at a rate of 200n kg NH4 +N ha?1. howver, the recovery was low, ranging from 10 to 25 percent of that applied. In field experiments with maize (Zea mays), urea-N was rapidly lost when applied to soils in a wet tropical environment. At normal rates of application (100 kg urea-N ha?1) only about half of the fertilizer was utilized by the crop. Mulches did not significantly affect the fate of added nitrogen; however, mulching did result in increased yields for dry-season cropping, due probably to water conservation effects. There is good indication that for conditions in Trinidad, NH4 +-N is better utilzed and less subject to unidentified losses than is urea. Addition of fertilizer-N resulted in crop uptake of important quantities of native soil nitrogen. The Caribbean Andepts were outstanding in that the showed very little NH4 +-fixation under all experimental conditions and very little tendency for apparent nitrification of added NH4 +-N.  相似文献   

12.
Agricultural production of biogas maize (Zea mays L.) causes hazards to aquatic ecosystems through high levels of nitrogen (N) inputs. Newly introduced and already established perennial crops such as the cup plant (Silphium perfoliatum L.) and perennial grass mixtures offer the possibility of more environmentally friendly agricultural bioenergy production. The objectives of this field study were to quantify and compare soil mineral N, water infiltration, water runoff, soil erosion and N leaching under maize, permanent cup plant, and a perennial grass mixture. The study was conducted from October 2016 to March 2019 in Braunschweig, Germany. Plots with cup plant and grass mixture exhibited lower mineral N contents than maize, especially between 30 and 90 cm soil depth. Soil water infiltration was significantly different between the three crops. The grass mixture had the highest infiltration rates (6.2 mm/min averaged across 3 years), followed by cup plant (3.6 mm/min) and maize (0.9 mm/min). During wet periods, higher N leaching was found for maize (up to 42 kg N ha?1 year?1) than for cup plant (up to 5 kg N ha?1 year?1) or the grass mixture (up to 11 kg N ha?1 year?1). While runoff and erosion for cup plant and the grass mixture were negligible during the study period, considerable amounts of runoff water and eroded sediment of up to 1.5 Mg ha?1 year?1 were collected from the maize plots despite the near flat terrain of the experimental field. Overall, permanent cup plant proved suitable as a component for energy cropping systems to reduce the risk of N leaching and soil erosion, which is particularly important for the preventive flood protection in view of the more frequent occurrence of high intensity rainfall under climate change conditions.  相似文献   

13.
Nitrogen (N) fertilization potentially affects soil N mineralization and leaching, and can enhance NH3 volatilization, thus impacting crop production. A fertilizer experiment with five levels of N addition (0, 79, 147, 215 and 375 kg N ha-1) was performed in 2009 and 2010 in a maize field in Huanghuaihai region, China, where > 300 kg N ha-1 has been routinely applied to soil during maize growth period of 120 days. Responses of net N mineralization, inorganic N flux (0–10cm), NH3 volatilization, and maize yield to N fertilization were measured. During the growth period, net N mineralization and nitrification varied seasonally, with higher rates occurring in August and coinciding with the R1 stage of maize growth. Soil NO3 -N contributed to more than 60% of inorganic N flux during maize growth. Cumulative NH3 volatilization increased with N additions, with total NH3 volatilization during maize growth accounting for about 4% of added N. Relative to the control, mean maize yield in the fertilizer treatments increased by 17% and 20% in 2009 and 2010, respectively. However, grain yield, aboveground biomass, and plant N accumulation did not increase with added N at levels > 215 kg N ha-1. These results suggest that the current N rate of 300 kg N ha-1 is not only excessive, but also reduces fertilizer efficacy and may contribute to environmental problems such as global warming and eutrophication of ground water and streams.  相似文献   

14.
Wang Q J  Li S X  Jing Ze C  Wang W Y 《农业工程》2008,28(3):885-894
We conducted this study in lightly and severely degraded Kobresia pygmaea meadow in Gande County, Qinghai Province of China. The purpose of this research was to compare carbon and nitrogen concentrations, content and dynamics of aboveground tissue, belowground roots and soil (0-40 cm) between lightly and severely degraded Kobresia meadow. The results showed that C and N concentrations and C:N ratio of the aboveground tissue were significantly higher in lightly degraded grassland than in severely degraded grassland. In addition, total carbon and nitrogen concentrations of the aboveground tissue were ranked in order of forbs > grasses > sedges in the same grassland type. Total carbon and nitrogen concentrations of belowground roots were significantly higher in severely degraded grassland than in lightly degraded grassland. Total carbon and nitrogen concentrations were higher in the aboveground tissue than in the belowground roots. Total soil organic carbon concentration in severely degraded grassland was significantly lower than that in lightly degraded grassland, and decreased with depth. C and N content per unit area was ranked in order of 0-40 cm soil depth > belowground roots > aboveground issue in the same grassland type. The total carbon content per unit area of aboveground tissue, roots and 0-40 cm soil depth declined by 7.60% after degradation from lightly (14669.2 g m−2) to severely degraded grassland (13554.3 g m−2), i.e., 0-40 cm soil depth declined by 4.10%, belowground roots declined by 59.97% and aboveground tissue declined by 15.39%. The nitrogen content per unit area of aboveground tissue, roots and 0-40 cm soil depth increased after degradation by 12.76% from lightly (3352.7 g m−2) to severely degraded grassland (3780.6 g m−2), i.e., 0-40 cm soil depth increased by 13.07%, belowground roots declined by 55.09% and aboveground tissue declined by 16.00%. As a result of grassland degradation, the total carbon lost by 11149 kg hm−2, and the total nitrogen increased by 4278 kg hm−2.  相似文献   

15.
The apparent transfer of N from clover to associated grass was evaluated over a four year period both on the basis of harvested herbage and by taking account of changes in N in stubble and root (to 10 cm depth) in swards with perennial ryegrass and three different white clover cultivars differing in leaf size. The large leaved Aran transferred 15% of its nitrogen while Huia transferred 24% and the small leaved Kent Wild White transferred 34%. When changes in stubble and root N were taken into account the percentage of N transferred was calculated to be 5% less than in harvested herbage only, as the small leaved types had proportionately more N in the roots and stolons, but the large leaved type was probably more competitive towards the grass.Loss of N from clover roots from July to October was compared to that from grass roots in a grass/white clover sward continuously stocked with steers using a method which incorporated tissue turnover and 15N dilution techniques. Less than 1 mg N m-2 d-1 was lost from the grass roots. In contrast 8 mg m-2 d-1 were estimated to be lost from clover roots while 12 mg N m-2 d-1 were assimilated.It is concluded that clover cultivar and competitive ability on grass have to be taken into account together with the relationship between N turnover in roots and N available for grass growth when modelling N transfer in grass/clover associations.  相似文献   

16.
In an alley cropping system, prunings from the hedgerow legume are expected to supply nitrogen (N) to the associated cereal. However, this may not be sufficient to achieve maximum crop yield. Three field experiments with alley-cropped maize were conducted in a semi-arid environment in northern Australia to determine: (1) the effect of N fertilizer on maize growth in the presence of fresh leucaena prunings; (2) the effect of incorporation of leucaena and maize residues on maize yield and the fate of plant residue15N in the alley cropping system; and (3) the15N recovery by maize from15N-labelled leucaena, maize residues and ammonium sulphate fertilizer.Leucaena residues increased maize crop yield and N uptake although they did not entirely satisfy the N requirement of the alley crop. Additional N fertilizer further increased the maize yield and N uptake in the presence of leucaena residues. Placement of leucaena residues had little effect on the availability of N to maize plants over a 2 month period. The incorporation of leucaena residues in the soil did not increase the recovery of leucaena15N by maize compared with placement of the residues on the soil surface. After 2 months, similar proportions of the residue15N were recovered by maize from mulched leucaena (6.3%), incorporated leucaena (6.1%) and incorporated maize (7.6%). By the end of one cropping season (3 months after application) about 9% of the added15N was taken up by maize from either15N-labelled leucaena as mulch or15N-labelled maize residues applied together with unlabelled fresh leucaena prunings as mulch. The recovery of the added15N was much higher (42.7%) from the15N-labelled ammonium sulphate fertilizer at 40 kg N ha-1 in the presence of unlabelled leucaena prunings. Most of the added15N recovered in the 200 cm soil profile was distributed in the top 25 cm soil with little leached below that. About 27–41% of the leucaena15N was apparently lost, largely through denitrification from the soil and plant system, in one cropping season. This compared with 35% of the fertilizer15N lost when the N fertilizer was applied in the presence of prunings. ei]H Lambers  相似文献   

17.
Changes of pasture communities consequent to management practices resulting from land abandonment considerably affect the structure and function of the ecosystem. This study analyses the consequences of grazing abandonment in terms of plant and soil microbial diversity and fertility, on a Mediterranean upland sheep pasture, over a short period (five years). Grazing was experimentally excluded by fencing ten 10×10 m permanent plots within an area that had supported grazing until 2000, by 0.23 sheep ha?1. Plant and soil microbial communities and physicochemical parameters were monitored within the fenced and unfenced control plots, during three sampling times from 2000 (before the fencing) to 2005. Grazing cessation notably altered the floral composition, with an average dissimilarity of 96.7% between the vegetation communities, over five years. No significant change occurred in the control plots that were grazed throughout the sampling period. This work highlighted that, over a short term, the structural change in the specific plant composition affected only the grass species, confirming that grazing favours the small-sized species over the annual species. Further, it was evident that species groups of conservational and phytogeographic interest, like the endemic and Mediterranean-Atlantic species, tended to disappear with pasture abandonment and were substituted by more widespread species throughout the Mediterranean or even the world. Pasture abandonment was accompanied by an increase of soil pH and a decrease in soil organic matter and soil nitrogen. The microbial parameters recorded at three different sampling times revealed a substantial effect of the plant community, or the time of grazing abandonment, on soil microbial abundance and diversity. Considerable importance is given to the consequences of pasture abandonment on the conservation of plant and microbial diversity and on soil fertility.  相似文献   

18.
Summary Bags containing Sitka spruce litter (0, 15, 50 g) were placed in flower pots and covered with sand. Pots were watered at weekly intervals with nutrient solutions with and without nitrogen and with and without phosphorus. Decomposition was measured by carbon dioxide evolution from pots without plants. Neither added nitrogen nor added phosphorus had any marked effect on the rate of decomposition, which amounted to 14% loss of carbon in a year. The two grass species responded similarly to fertilizer; 72% of added nitrogen and 90% of added phosphorus were recovered in plant parts.A. capillaris captured nutrients more effectively from spruce litter than didD. flexuosa, recovering 13% of the phosphorus in the litter but only 5% of the nitrogen. Neither uptake of nitrogen nor uptake of phosphorus was enhanced in plants receiving fertilizer additions of the other nutrient.  相似文献   

19.
The success of alley cropping depends to a large extent on the efficiency of transfer of nitrogen (N) from the legume hedgerow plants to the non-legume crop. Here the idea is examined that leucaena prunings (residues) can supply enough N to maize plants to significantly reduce the degree of N deficiency. Two experiments on decomposition of leucaena leaf, stem, and petiole and mineralization of N from leucaena residues were conducted in field microplots which received application of either15N-labelled leucaena materials or ammonium sulphate fertilizer. The microplots were installed in alleys formed by leucaena hedgerows spaced 4.5 metres apart and cropped with maize. The decomposition of leucaena leaves, stems and petioles was estimated by several methods. The decomposition ranged from 50–58% with leaves, 25–67% with stems and 38–51% with petioles 20 days after addition. More than 55% of the N was released in 52 days during decomposition of leucaena residues. By 20 days after application of15N-labelled leucaena 3.3–9.4% of the added15N was found in the maize plants, 32.7–49.0% was in the leucaena residues, 36.0–48.0% in the soil and 0.3–21.9% lost (deficit). By 52 days 4.8% of the15N applied in leucaena prunings was taken up by maize, 45.1% was detected in the residues, 24.9% in the soil and 25.2% lost. However, when N fertilizer was applied, 50.2% of the fertilizer N was recovered by maize, 35.5% was retained in the soil and 14.3% apparently lost. There was a marked increase in maize plant dry matter and N uptake in the microplots with addition of leucaena prunings compared with those in the microplots without leucaena added. Most of the15N remaining in the soil profile, derived from leucaena residues, was detected in the top 25 cm soil with less than 2% found below 25 cm. ei]H Lambers  相似文献   

20.
The soil nitrogen cycle was investigated in a pre‐established Lolium perenne sward on a loamy soil and exposed to ambient and elevated atmospheric CO2 concentrations (350 and 700 μL L?1) and, at elevated [CO2], to a 3 °C temperature increase. At two levels of mineral nitrogen supply, N– (150 kgN ha?1 y?1) and N+ (533 kgN ha?1 y?1), 15N‐labelled ammonium nitrate was supplied in split applications over a 2.5‐y period. The recovery of the labelled fertilizer N was measured in the harvests, in the stubble and roots, in the macro‐organic matter fractions above 200 μm in size (MOM) and in the aggregated organic matter below 200 μM (AOM). Elevated [CO2] reduced the total amount of N harvested in the clipped parts of the sward. The harvested N derived from soil was reduced to a greater extent than that derived from fertilizer. At both N supplies, elevated [CO2] modified the allocation of the fertilizer N in the sward, in favour of the stubble and roots and significantly increased the recovery of fertilizer N in the soil macro‐organic matter fractions. The increase of fertilizer N immobilization in the MOM was associated with a decline of fertilizer N uptake by the grass sward, which supported the hypothesis of a negative feedback of elevated [CO2] on the sward N yield and uptake. Similar and even more pronounced effects were observed for the native N mineralized in the soil. At N–, a greater part of the fertilizer N organized in the root phytomass resulted in an underestimation of N immobilized in dead roots and, in turn, an underestimation of N immobilization in the MOM. The 3 °C temperature increase alleviated the [CO2] effect throughout much of the N cycle, increasing soil N mineralization, N derived from soil in the harvests, and the partitioning of the assimilated fertilizer N to shoots. In conclusion, at ambient temperature, the N cycle was slowed down under elevated [CO2], which restricted the increase in the aboveground production of the grass sward, and apparently contributed to the sequestration of carbon belowground. In contrast, a temperature increase under elevated [CO2] stimulated the soil nitrogen cycle, improved the N nutrition of the sward and restricted the magnitude of the soil C sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号